Understanding touch through latent spaces:
can images and haptic maps reflect human perception?
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Figure 1. Overview of the proposed approach. On the left, paired RGB images and haptic maps from representative materials (e.g., rock,
grass, leather) are processed by modality-specific encoders. On the right, the resulting embeddings are projected into a latent space and
analyzed with respect to human perceptual dimensions such as rough/smooth and hard/soft. Our work investigates how visual and tactile
modalities contribute to shaping a latent representation that aligns with human material perception.

Abstract

Extended Reality (XR) systems are increasingly incorporat-
ing multi-sensory stimuli to enhance realism and user im-
mersion. Among these, the integration of tactile feedback
plays a crucial role. Yet, the pipeline for acquiring, pro-
cessing, and rendering haptic information—especially in
synchrony with visual stimuli—remains largely unstandard-
ized. A common strategy for capturing tactile data involves
encoding it as haptic maps, essentially image-based rep-
resentations of touch. However, the effectiveness of both
visual and tactile modalities in modeling perceptual haptic
properties is not yet fully understood.

In this study, we analyze the representational power
of haptic maps and RGB images from the Touch and Go
dataset using latent space analysis. Specifically, we inves-

tigate whether a neural network can structure the latent
space in a way that reflects human perceptual attributes
such as roughness, hardness, and colorfulness.

Our findings contribute to understanding whether haptic
maps can serve as reliable proxies for tactile data and align
with how humans perceive material properties, marking a
step forward toward perceptually grounded haptic repre-
sentations in XR environments.

1. Introduction

A characteristic aspect of Extended Reality (XR) systems,
distinguishing them from traditional media, is the active
interaction between users and virtual content. Users are
no longer passive observers; they can move within the



scene, add or remove elements, and modify object features,
thereby crafting personalized and immersive experiences.

Humans naturally engage with the world “multi-
modally”, i.e., through multiple senses simultaneously.
However, most current XR systems primarily rely on vi-
sion and hearing, neglecting other sensory modalities. To
enhance realism and presence in virtual environments, it is
essential to replicate the full range of human sensory expe-
riences [1, 26]. In this context, touch plays a crucial role.
The lack of tactile feedback—such as resistance when grab-
bing an object or variation in texture during surface interac-
tion—significantly reduces perceived realism [5].

However, while visual and auditory integration are well-
established, touch remains underexplored, lacking standard
acquisition, processing, and rendering protocols [19]. This
gap is further broadened by the incomplete understanding of
how surface properties translate into human tactile percep-
tion. Despite the variability within each material class (e.g.,
a tree log versus a wooden table), humans are remarkably
proficient at identifying materials and associating them with
familiar categories and perceptual qualities such as rough-
ness or softness. Moreover, humans can identify materials’
characteristics (e.g., rough or smooth surfaces) and can re-
late new, unseen materials to familiar examples based on
past experience and semantic information.

Material perception encompasses two interconnected
tasks [9]: recognition, i.e., classifying a material into a se-
mantic category (e.g., fabric or metal), and attribute assign-
ment, i.e., associating physical qualities such as roughness,
hardness, or warmth. While affective responses to touch
(e.g., pleasantness) are highly subjective, physical proper-
ties have been studied more systematically and commonly
include roughness (rough/smooth), hardness (hard/soft),
and temperature (cold/warm) [15, 16].

Tactile data can be acquired using various sensors.
In multimedia applications, they often take the form of
mono-dimensional signals or 2D tactile maps [18]. These
maps are produced by either inertial sensors—such as ac-
celerometers and force sensors [12]—or by vision-based
approaches [0, 28], which use cameras to capture the de-
formation of a membrane upon contact [14]. The output is
an RGB image, commonly referred to as a tactile or haptic
map, as illustrated in Fig. 2.

Although touch is central to material perception, vision
also provides critical cues. As highlighted in [25], visual
and tactile information contribute independently but com-
plementarily to texture perception. Vision provides a sig-
nificant contribution for identifying boundaries and coarse
features, while touch excels at detecting fine-grained prop-
erties such as roughness. Moreover, visual input extends the
perceptual space to include attributes such as glossiness and
brightness [16]. This interplay underscores the importance
of modeling both modalities to capture the full spectrum of

material perception.

Although RGB images are widely used and understood
to be rich in perceptual information, the extent to which they
align with haptic features remains underexplored. Similarly,
few studies have assessed whether haptic maps encode suf-
ficient information to represent touch in a way that is mean-
ingful for humans.

Our contribution. In this work, we explore whether a
neural network can learn to represent both visual and tactile
data in a latent space that aligns with human perception. We
use contrastive learning—considering both supervised and
self-supervised approaches to train models that embed RGB
images and haptic maps from the Touch and Go dataset [27]
into a shared latent space. Contrastive learning enables the
model to distinguish similar (positive) from dissimilar (neg-
ative) pairs, promoting rich and semantically meaningful
representations [23]. We then assess whether the resulting
latent space reflects the perceptual dimensions identified in
the tactile literature [15, 16].

This approach is a step toward perceptually grounded
representations of tactile stimuli, which could eventually
support automatic haptic rendering. Current haptic systems
often rely on predefined parameters to simulate material
properties; our work opens the possibility of learning these
properties directly from perceptually aligned data. Our con-
tributions can be summarized as:

* we investigate the relationship between haptic maps and
human tactile perception;

* we extract both task-specific and task-agnostic feature
representations for visual and touch using supervised and
self-supervised contrastive learning approaches;

» we demonstrate that the learned latent space captures ma-
terial properties in a way that aligns with established per-
ceptual dimensions.

2. Related work

The alignment of haptic data and RGB images has been a re-
curring strategy since early haptic datasets [4, 21], enabling
models to estimate tactile properties from visual input. In
this context, haptic maps—image-based tactile represen-
tations—have gained relevance, as they allow leveraging
computer vision techniques not suited to mono-dimensional
signals. Despite their potential, XR applications have tradi-
tionally used simpler, one-dimensional tactile inputs. Re-
cent efforts, however, have begun to explore the use of hap-
tic maps for digitizing surfaces and objects in immersive
scenarios.

Haptic maps for human-centered applications. Yang er
al. [27] introduced one of the first datasets aligning RGB
images and haptic maps with a focus on human interaction,
moving beyond robot-centric setups involving small, gras-



pable objects. They proposed a contrastive learning frame-
work to bring together features from RGB and tactile do-
mains belonging to the same instance. This work forms the
baseline for our experiments.

More recently, Dou et al. [7] introduced a dataset con-
taining reconstructed 3D scenes—both indoor and out-
door—via Neural Radiance Fields (NeRFs), enabling the
generation of novel-view haptic maps. Stefani er al. [20]
further introduced a contact localization task to spatially an-
chor haptic feedback within 3D scenes.

Heravi et al. [11] adopted an action-conditioned ap-
proach using the HaTT dataset [4] to generate haptic feed-
back from tactile maps, connecting tactile data with embod-
ied human interactions.

Although these works explore haptic maps from a
human-centered perspective, it remains unclear whether
such maps truly reflect human tactile perception. Moreover,
it is not well understood whether neural networks trained on
visual and haptic maps can approximate perceptual dimen-
sions as experienced by humans.

Material perception in humans. To evaluate whether
neural representations align with human perception, we
draw on studies that systematically analyze human material
perception.

Fleming et al. [9] conducted two comprehensive user
studies to assess how people perceive material qualities. In
the first, participants rated images from 10 material classes
(e.g., glass, wood, metal) on nine perceptual attributes such
as glossiness, roughness, and colorfulness using a six-point
Likert scale. In the second, participants were given a list of
42 adjectives and were asked to associate them with six ma-
terial categories, allowing for the construction of a material-
perception space.

Awan et al. [2] expanded on this work by using physical
samples of real materials (e.g., steel mesh, rubber, sandpa-
per). In the first phase of their study, participants selected
the most relevant attributes (from a list of 25) for each ma-
terial. This resulted in five primary perceptual dimensions:
rough/smooth, flat/bumpy, sticky/slippery, hard/soft, and ir-
ritating/pleasant. In the second phase, participants rated
each material on a continuous 0-100 scale along these di-
mensions.

In our study, we rely on these two sources [2, 9] to map
the learned latent space to human perception. We focus
on three dimensions: rough/smooth and hard/soft, which
are common to both studies, and colorfulness, which is
uniquely relevant to the visual domain. We exclude affec-
tive dimensions such as prettiness or pleasantness due to
their high subjectivity.

In addition, we leverage the correlation matrix provided
in the second experiment of [9], which quantifies how ma-
terial categories relate in human perception. We compare
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these correlations with the distances among materials in our
learned latent space to assess perceptual alignment.

3. Method

Our objective is to assess whether a neural network can
learn visuo-tactile representations that reflect human per-
ceptual dimensions—specifically, roughness, hardness, and
colorfulness. To this end, we train both supervised and self-
supervised contrastive learning models to map visual and
tactile samples into a shared latent space. We then analyze
this space to determine whether materials are organized in
accordance with perceptual similarities.

Mapping visuo-tactile samples onto a shared la-
tent space. We adopt two contrastive learning
approaches—self-supervised and supervised—to learn
a joint embedding space for visual and tactile inputs. These
approaches aim to pull together paired samples from the
two modalities and push apart unpaired ones.

Self-supervised methods [22, 27] are known for learn-
ing general-purpose features without requiring labels. In
contrast, supervised contrastive learning [13] incorporates
labeled data during training, often leading to more task-
specific and less generalized feature representations.

Given a sample v; from the visual dataset V' and the cor-
responding sample ¢; from the tactile dataset 7', the objec-
tive is to represent paired samples (v;, t;) in a similar way,
while pushing mismatched samples (v;, t;) apart in the rep-
resentation space.

The network structure, illustrated in Fig. 2, consists of
two ResNet18 encoders: one for the visual domain, fy (v;),
and one for the tactile domain, fr(¢;).

Following [13], we aim to optimize the following loss:

L=Lvr+Lry, (D



where each individual loss term encourages matching a vi-
sual sample v; with a tactile sample and vice versa. Next,
we separately define the different visual-to-tactile losses
Ly, for both cases. The tactile-to-visual Ly losses are
not explicitly reported as they can be obtained by swapping
the two domains.

For the self-supervised learning case, we employ a Con-
trastive Multiview Coding (CMC) model [22, 27], thus
defining the following loss:

B exp(fv (vi) - fr(t:)/7)
Ly = —log )
2z exp(fv (vi) - fr(t;)/T)
where 7 = 0.07 is a constant temperature parameter.

For the supervised version of our contrastive method, the
visual-to-tactile loss is defined as:
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where P(i) represents the set of all positive sample indices

in a batch, |P(7)| denotes its cardinality, and 7 is the same

constant parameter.

Latent space analysis. After training, we extract fea-
tures from the fifth ResNet layer, as commonly done in the
contrastive learning literature [27], and apply t-distributed
Stochastic Neighbor Embedding (t-SNE) [24] to project the
high-dimensional embeddings into a 2D space. This visu-
alization allows us to assess whether the learned represen-
tation clusters reflect perceptual dimensions relevant to hu-
man material understanding.

4. Experiments and discussion

Dataset. We conduct our tests on the Touch and Go
dataset [27], the most comprehensive publicly available
dataset providing paired visual and tactile samples with ma-
terial annotations. Synchronized visual and tactile pairs are
extracted from video frames, where the RGB images of-
fer an egocentric perspective of the touch sample collec-
tion process, as shown by the samples in Fig. 2. The tac-
tile samples are collected using a GelSight sensor [28], a
vision-based tactile device in which a camera tracks the de-
formation of a curved elastomer gel, illuminated by multi-
ple colored light sources and embedded with internal mark-
ers. The dataset comprises 13.9k detected touch samples of
3,971 individual object instances, categorized into 20 differ-
ent classes. Among these, four classes are over-represented,
with more than 1,000 samples each, while five classes are
under-represented, with fewer than 400 samples each.
Implementation details. The self-supervised learning
CMC model is trained in accordance with the experiments
performed in [27] using a learning rate of 0.05 for 240

N b o exp(fv (vi) - fr(t:)/T)
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epochs. Stochastic Gradient Descent (SGD) is employed
as optimizer, with a weight decay of 0.0001 and a momen-
tum of 0.9. To fairly compare the self-supervised model,
we trained our supervised learning model adopting the same
hyperparameters. Both trainings are conducted with a batch
size of 128 on a NVIDIA RTX 4090 GPU.

Experiments. To evaluate how the latent space is orga-
nized and whether it reflects human perception, we project
the data into a shared latent space, which is analyzed
through t-SNE visualizations. We evaluate the latent space
representations obtained from visual and haptic inputs for
different scopes, namely (A) material and perceptual at-
tribute classification (B) alignment to human perception for
hard/soft, rough/smooth, colorfulness features.

4.1. Latent space structure: supervised vs self-
supervised

We first compare the ability of supervised and self-
supervised contrastive learning frameworks to organize the
latent space in a meaningful way. Our objective is to assess
whether these models can encode visual and tactile features
such that materials presenting similar perceptual attributes
are placed nearby in the feature space.

To do so, we analyze the 2D t-SNE projections of
the latent representations extracted from the fifth ResNet
layer, as in [27]. As shown in Fig. 3, the self-supervised
model fails to produce distinct clusters, whereas the super-
vised model—guided by material class labels—yields well-
separated groupings across both visual and tactile modali-
ties.

Visual vs. tactile representations. The latent space
representations for the visual (Fig. 3a) and the tactile
(Fig. 3b) domains present both commonalities and differ-
ences. Specifically, subsets of materials such as wood,
metal, and glass, or grass and fabric, are close in both la-
tent spaces, while others have different patterns. For in-
stance, fabric and rock are close in the haptic latent space,
while they are opposites in the visual latent space. Simi-
larly, wood and rock are adjacent in the visual latent space,
while they are distant in the touch space. A possible in-
terpretation for this phenomenon is that the two encoders
focus on different material features as occurs for the human
perception channels [25]. Thus, as the touch domain is the
primary focus of our study and following [27], we conduct
our quantitative analysis on the material classification task
using the tactile features.

Material classification. To quantify the difference be-
tween the supervised and the self-supervised approaches or-
ganization capabilities, we firstly performed material clas-
sification. The supervised model achieves an accuracy of
67.31%, while the self-supervised model obtains 54.7%.
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Figure 3. Supervised vision and touch vs self-supervised vision and touch latent space representations. Subfigures (a) and (c) (+—) represent
the material distribution in the latent space obtained from visual features; Subfigures (b) and (d) (—) represent the material distribution in
the latent space obtained from tactile features, and Subfigure (e) contains the material-color legend.

This confirms the superior discriminative power of the su-
pervised embeddings for material recognition. This phe-
nomenon is in line with common learning tasks, where su-
pervised approaches usually outperform unsupervised ones.

Perceptual attribute classification. We then evaluate
whether the latent features encode perceptual properties be-
yond material identity. Specifically, we train binary classi-
fiers to predict rough/smooth and hard/soft attributes. Un-
like the previous experiment, this task tests whether the net-
work organizes the latent space in alignment with percep-
tual judgments.

To this end, we consider two sources of labels:

e Touch and Go labels: dataset-provided annotations.
rough/smooth labels are assigned per instance disregard-
ing material classes, hard/soft labels are class-based and
derived from sound cues [17].

* Perceptual labels: class-level labels based on human per-
ception studies [2, 9]. For [9], we binarize the 6-point rat-
ing scale into rough/hard ([4-6]) and smooth/soft ([1-3]).
For [2], a similar thresholding is applied to the 100-point
scale (with [51-100] indicating the presence of a trait).

Touch and Go labels. We begin by training linear clas-
sifiers using the labels provided directly in the Touch and
Go dataset. Classification results for both the rough/smooth
and hard/soft dimensions are reported in Table 1. The super-
vised model consistently outperforms the self-supervised
baseline, confirming its stronger ability to organize the la-
tent space.

To better interpret these results, we visualize the latent
space colored by the Touch and Go labels (Fig. 4). As seen
in Fig. 4a and 4b, the supervised model produces a clear and
consistent boundary between hard and soft materials in both
modalities. The only exception is represented by the paper
class which lies in the hard latent space portion, while being
labeled as a soft material according to the dataset ground-
truths. This phenomenon is class-specific: paper is typically
associated with soft materials, however, the scanning pro-
cess may lead to a misinterpretation of the hard attribute,
as paper is often placed on hard surfaces such as tables or
books.

In contrast, the self-supervised model fails to separate
the two hardness categories clearly. A similar trend is ob-
served for the rough/smooth dimension: while both models
perform worse overall, the supervised tactile latent space
(Fig. 4f) still exhibits two distinguishable clusters. This



Accuracy

Method
Roughness Hardness
Supervised 85.2 93.5
Our self-supervised 82.0 78.9
Touch and Go [27] baseline 79.4 71.3

Table 1. Classification comparison between supervised and self-
supervised methods on rough and hard attributes using the Touch
and Go labels.

aligns with prior findings [25], where roughness percep-
tion is more strongly tied to touch than to vision—especially
for fine-grained textures. The self-supervised tactile space
(Fig. 4h) shows weaker structure but still encodes some per-
ceptual signal.

These results also reflect the limitations of using
instance-wise versus class-wise annotations. In particu-
lar, roughness—being highly variable within a material
class—is poorly captured by class-level labels. Moreover,
the dataset annotations do not always reflect human percep-
tion, which motivates our second experiment.

Perceptual labels. We train a binary linear classifier with
the different sets of labels, using both supervised and
self-supervised approaches. The results are shown in Ta-
ble 2. Consistently, the supervised model outperforms the
self-supervised one, especially for perceptual classification.
This diverges from common trends in other domains [3, 10],
where pre-training on self-supervised features often gener-
alize better on downstream tasks thanks to the richer fea-
ture representation learned. In haptic, however, supervised
learning appears to better capture semantically grounded
perceptual cues.

Motivation for supervised model adoption. Our objec-
tive is not to directly compare the classification accuracy
of the two learning frameworks, but to assess which model
better organizes the latent space in alignment with human
perception. The results presented above clearly demon-
strate that the supervised model more accurately encodes
both roughness and hardness as perceived by humans. It
shows better boundary formation, more consistent clus-
tering, and superior classification performance using both
dataset-based and perception-based annotations.

Based on these findings, we adopt the supervised con-
trastive learning model for all subsequent experiments. This
choice ensures that our latent space evaluations—especially
those based on human perception—are grounded in the
most semantically meaningful representation available.

Source Method Accuracy
Roughness Hardness
(9] Supervised 99.75 99.73
Self-Supervised 89.90 94.06
] Supervised 99.69 99.86
Self-Supervised 93.56 97.72

Table 2. Classification comparison between supervised and self-
supervised methods on rough and hard perceptual labels proposed
respectively in [2, 9].

4.2. Human perception: a latent space evaluation

To assess whether the latent space representations align with
human perceptual organization, as analyzed in [2, 9], we
conduct three experiments by re-coloring the t-SNE projec-
tions according to perceptual classifications derived from
these studies. In each visualization, darker colors (P) in-
dicate material categories explicitly included in the origi-
nal studies, while lighter tones (P+) represent materials that
were not directly evaluated but were manually assigned to
the closest perceptual class based on our interpretation.

Quantitative evaluations for these classifications are re-
ported in Table 3, using the same linear classifier setup de-
scribed in the previous section. This dual representation
allows us to compare how well the latent space captures
both directly validated perceptual labels and those inferred
through extension.

Hard/Soft perceptual evaluation. Figures 5a and 5b
present the hard/soft classification from [9], compared to
our latent space projections in Fig. 4a and 4b. Here, the
separation between hard and soft materials aligns almost
perfectly, despite the fact that our models were trained us-
ing sound-derived labels from [17]. The main exception is
leather, which is labeled as soft in Touch and Go and is lo-
cated in the soft region of the latent space, but is perceived
as hard in the perceptual study. This could be attributed
to the specific type of leather used—for instance, flexible
leather garments versus rigid leather upholstery.

As to the perceptual analysis performed in [2], the sub-
jective perception (Fig. 5d and 5¢) is perfectly aligned to the
latent space representation apart from the paper class, which
is perceived as hard according to the perceptual study. Inter-
estingly, although paper is labeled as soft in Touch and Go,
it lies on the hard side of the boundary in the latent space,
consistent with how it is perceived in the perceptual study.
This further supports the claim that the learned representa-
tions, particularly in the supervised model, align well with
human judgments.

These qualitative insights are supported by the quan-
titative results in Table 3, where the supervised classifier
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distribution; Subfigures (b), (d), (f), and (h) (—) represent the tac-
tile features distribution.

consistently achieves over 99% accuracy when training and
testing on perceptual hard/soft labels (P and P+) from both
studies. This confirms the strong alignment between the
learned latent space and human perception of material com-
pliance.

Rough/Smooth perceptual evaluation. Figures 6a
and 6b show the latent space projections colored based on
the roughness classification from [9]. These results reveal
that the visual encoder does not form clearly separable

Hard_our ® Soft Soft_our
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Figure 5. Perception-based hard/soft classification. Subfigures (a)
and (b) (1) present the re-coloring based on [9], while subfigures
(c) and (d) (J) present the re-coloring based on [2].

Source Train Test Accuracy
Roughness Hardness

P P 99.75 99.73

(0] P P+ 78.35 90.94
P+ P 99.47 99.60

P+ P+ 99.54 99.57

P P 99.69 99.86

] P P+ 76.71 87.77
P+ P 99.51 99.83

P+ P+ 99.53 99.77

Table 3. Supervised classification accuracy across different com-
binations of training and testing perceptual labels. P refers to Per-
ceptual classification labels proposed in the source work (darker
colors), and P+ refers to Perceptual classification including also
our analysis.

clusters for rough and smooth materials. The tactile latent
space, while better organized, still shows discrepancies
with the perceptual labels. Specifically, plastic and paper
are associated with the rough label while they are perceptu-
ally perceived as smooth according to [9]. Additionally, the
rock class which is classified as smooth according to the
Touch and Go dataset, is instead perceptually perceived as
rough. However, this might strongly depend on the specific
samples as natural rocks can be both rough and smooth,
while the processed counterparts are usually smoother. In
addition, it is interesting to note that the paper class was
on average scored 3 out of 6 in the roughness-smooth
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Figure 6. Perception-based rough/smooth classification. Subfig-
ures (a) and (b) (1) present the re-coloring based on [9], while
subfigures (c) and (d) ({) present the re-coloring based on [2].

dimension in [9], thus it can be considered a challenging
material to classify on the rough/smooth dimension based
on human perception. This is further confirmed by the
study performed in [2], where the paper material is as-
sociated to the rough class from a perceptual perspective
(see Fig. 6¢c and 6d). As to the other materials, similar
conclusions can be drawn. An exception is represented
by fabric that is considered as smooth according to [9]
and as rough according to [2]. This further confirms that
the sample choice plays a relevant role in distinguishing
between rough and smooth classes, and that this distinction
should be sample-based rather than material-based to
properly reflect human perception.

The roughness classification results in Table 3 reflect a
more nuanced outcome. While accuracy remains high when
training and testing within the same perceptual subset (e.g.,
P to P), performance drops significantly when generalizing
to unseen samples (P to P+), especially for roughness. This
highlights the subjective and sample-dependent nature of
roughness perception and reinforces the need for instance-
level labeling when modeling tactile texture.

Colorfulness evaluation. An additional dimension con-
sidered in [9] is colorfulness. The mapping between the
perceptual classification and the latent space is provided in
Fig. 7. It is interesting to note that while for the touch la-
tent space there is not a clear separation, a boundary can
be identified for the vision latent space. This result can be
intuitively explained as color is a feature which can be en-
coded by the visual system while it is unperceivable through
touch.
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(a) Vision, re-coloring from [9] (b) Touch, re-coloring from [9]

Figure 7. Perception-based colorfulness classification.

Correlation of perceptual material classes. In the sec-
ond experiment presented in [9], participants were asked to
rate material classes using a variety of descriptive attributes,
and the authors computed correlations among material cat-
egories. The study highlighted that there were significant
correlations (p > 0.35) between the classes stone and wood,
metal and stone, and glass and metal. It is possible to no-
tice that these materials are adjacent in the visual latent
space, while only glass and metal are close in the haptic
latent space. This phenomenon can be motivated by the fact
that, as it is well-established in the scientific literature [8],
sight can be considered the humans’ dominant sense. Since,
during the second experiment, participants where not asked
to touch any object but to associate adjectives to material
classes, it is possible that the leading nature of sight has in-
fluenced the scoring of the participants. This might explain
the closer relation of the vision latent space with the subjec-
tive evaluations with respect to the touch space.

5. Conclusions and Future Works

This paper explores whether a neural network can learn re-
lationships between materials from visual and tactile inputs
and structure a feature space aligned with human percep-
tion. We evaluate this using supervised and self-supervised
contrastive learning. While the self-supervised model fails
to organize the space meaningfully, the supervised one suc-
cessfully clusters materials across both modalities. Through
three perception-inspired experiments, we show that the
extracted features resemble those used by humans, high-
lighting the importance of cues like roughness (haptic) and
colorfulness (visual). However, our characterization of
properties such as rough/smooth and hard/soft is currently
class-level rather than instance-specific, limiting granular-
ity. Moreover, although we relied on supervision, future
work could investigate more generalizable self-supervised
frameworks, such as Normalizing Flows, to structure the la-
tent space in a perceptually meaningful way. These findings
underscore the importance of multi-sensory integration in
material perception and lay the groundwork for automatic,
perceptually aligned stimulus generation in XR.
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