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Implicit representation

Vision Touch NOCS map

Explicit 3D scene representation

Figure 1. Starting from a set of images and sparse touch samples, we generate an implicit NeRF representation alongside a 3D Gaussian
Splatting model as an explicit 3D scene representation. The explicit 3D model is then transformed into Normalized Object Coordinate
Space (NOCS), enabling the extraction of NOCS maps, where each 3D position is color coded, as scene-level descriptors. This allow to
effectively bind the images from the vision domain to the 3D localization of touch samples in the scene, allowing a step forward toward
fully touchable 3D scenes.

Abstract

When compared to standard vision-based sensing, touch
images generally captures information of a small area of an
object, without context, making it difficult to collate them
to build a fully touchable 3D scene. Researchers have
leveraged generative models to create tactile maps (images)
of unseen samples using depth and RGB images extracted
from implicit 3D scene representations. Being the depth
map referred to a single camera, it provides sufficient in-
formation for the generation of a local tactile maps, but
it does not encode the global position of the touch sample
in the scene. In this work, we introduce a novel explicit
representation for multi-modal 3D scene modeling that in-
tegrates both vision and touch. Our approach combines
Gaussian Splatting (GS) for 3D scene representation with a
diffusion-based generative model to infer missing tactile in-
formation from sparse samples, coupled with a contrastive
approach for 3D touch localization. Unlike NeRF-based
implicit methods, Gaussian Splatting enables the compu-
tation of an absolute 3D reference frame via Normalized
Object Coordinate Space (NOCS) maps, facilitating struc-
tured, 3D-aware tactile generation. This framework not

only improves tactile sample prompting but also enhances
3D tactile localization, overcoming the local constraints
of prior implicit approaches. We demonstrate the effec-
tiveness of our method in generating novel touch samples
and localizing tactile interactions in 3D. Our results show
that explicitly incorporating tactile information into Gaus-
sian Splatting improves multi-modal scene understanding,
offering a significant step toward integrating touch into im-
mersive virtual environments. The code is available at:
https://github.com/mmlab-cv/SplatTouch

1. Introduction
As humans, we enjoy our daily interactions with objects in
a multi-modal fashion, exploiting one or more senses at the
same time, such as sight, hearing, and touch. When deal-
ing with the virtualization of real-world in VR/AR/XR and
robotic applications, the sensing experience should be faith-
fully replicated [1, 29]. The literature shows that sight and
hearing have been extensively explored and integrated, as
standard pipelines for collecting, processing, and delivering
visual and auditory information are well established. Vicev-
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ersa, tactile sensing has been lagging behind, with no stan-
dardized (or recognized de-facto) pipeline made available
[26].

As of today, the collection of tactile data has primarily
relied on two classes of sensors to map a small patch of
the real world data into a 2D tactile map, or sample. More
in detail, the literature refers to the use of either inertial
sensors [16] —such as accelerometers, probes, and force
sensors— or vision-based approaches [4, 6, 8, 34], which
capture high-resolution 2D information in the form of hap-
tic/tactile maps. The latter approach utilizes a camera to
record the deformation of a membrane upon contact with a
surface, as shown by the touch sample in Fig. 1.

The collection of tactile data from a 3D scene requires
users to sample multiple data points at different spatial lo-
cations. Most datasets jointly collect visual and tactile in-
formation by using an RGB camera to record the capture of
each touched point [13, 31], for visual matching and con-
textual purposes. However, this results in occlusion of the
touched area, as the sensor and the human or robotic hand
frequently obstruct the view of the area being sensed. In
TaRF [7], these limitations are overcome by rigidly attach-
ing the RGB camera and the tactile sensor. This setup en-
sures that each sample consists of an RGB image—suitable
for training a Neural Radiance Field (NeRF)—along with
a touch sample whose position in the 3D scene can be re-
trieved through its relationship with the camera.

However, while RGB images capture overlapping sam-
ples that provide contextual information about the scene,
tactile maps present a significant challenge due to the spar-
sity of the collected data, which typically consists of non-
overlapping discrete points. This discrete and sparse nature
makes it difficult to construct a comprehensive scene model
where haptic data is available for each 3D position of the
observed scene.

To address this issue, generative models, such as Gen-
erative Adversarial Networks (GANs) [10, 21, 35] and dif-
fusion models [7, 32], have been employed for cross-modal
touch estimation in novel views. For example, given a touch
sample from a portion of a wooden surface, the goal is to
extend this knowledge to the entire surface by leveraging
contextual RGB information. This is done using generated
multi-scale RGB images and depth maps extracted from a
NeRF model as contextual information for touch estimation
[7]. However, depth maps provide a relative contextual in-
formation, as they refer to the local camera position; this
turns out to be incomplete, when attempting to estimate the
absolute position of a queried touch in the 3D scene.

In this work, we propose a generative approach to ex-
tend local tactile information and infer a more comprehen-
sive understanding of the 3D scene. To achieve this, we
introduce three key components: an explicit 3D scene rep-
resentation using Gaussian Splatting, a generative model

based on diffusion techniques, and a contrastive method for
3D touch sample localization. Unlike current implicit ap-
proaches that compute depth maps as local spatial scene in-
formation, our explicit representation via Gaussian splatting
enables the computation of an absolute depth map, namely
a Normalized Object Coordinate Space (NOCS) map [28],
where RGB values correspond to precise 3D positions in
space. By extracting NOCS maps, we provide the diffusion
model with a structured 3D understanding of the scene, ob-
taining improved results on the generation of missing tactile
samples. Moreover, we show how the tactile data generated
can be used to train a contrastive framework, leading to im-
provements on the 3D tactile localization task, thanks to the
scene-level information provided by NOCS.

Our contributions can be summarized as:
• Binding together visual and tactile domain using NOCS

map as a global descriptor of the scene.
• Outperforming current approaches in the cross-modal

touch generation task thanks to the NOCS representation.
• Introducing a novel contrastive learning between NOCS

and touch domains for the 3D localization task.
• Establishing a novel 3D localization task, where the goal

is to accurately retrieve the position of a queried touch
sample in the 3D scene.

2. Related work
NOCS map as scene representation. First introduced in
the context of object pose estimation [28], Normalized Ob-
ject Coordinate Space (NOCS) aim at providing a shared
canonical representation for all possible object instances
within a category. NOCS maps have commonly indicated
the 2D projection of the canonical representation on an im-
age plane [28, 30]. In [15, 30], the authors use diffusion
models to generate multiple NOCS maps of different view-
points, effectively tricking generative models to provide a
2D representation of the 3D world. In our work we propose
to apply the NOCS representation on GS at a scene level
for a dual goal: (I) providing the diffusion model with a
scene-level global context information for the cross-modal
generation of novel touch samples, and (II) aiding the touch
3D localization task.

Cross-modal touch generation. Cross-modal touch
generation aims at estimating the touch signal given an
RGB image. Recently, this task has gained popularity in
many real-world applications, since it allows to collect data
according to one modality, and successively transfer the in-
formation to a different one [7, 9, 11, 20, 24, 32, 33]. De-
pending on the data at hand, the task can be divided into two
main branches, considering whether the RGB images con-
tain the human/robotic hand that is touching the object inter-
est, thus effectively leading to the object of interest to be oc-
cluded in the RGB image [9, 10, 20, 24, 32], or not [7, 11].
Both classes of methods rely only on contextual RGB infor-



mation to infer the necessary information for generating the
touch samples.

Recently, a novel line of works [7, 33, 35] has tried to
combine different pieces of information from different do-
mains. In [33] the authors bind touch to both visual and nat-
ural languages domains; however, they do not provide any
3D scene representation. In [35] NeRF-rendered RGB-D
images are fed as inputs to a conditional Generative Adver-
sarial Network model (cGAN) to generate tactile samples.
Similarly, in [7] the authors extract the depth and visual data
from a 3D scene representation, for a better output. The
depth represents a local descriptor of the scene, contribut-
ing to the generation task, yet not allowing to retrieve the 3D
position of the generated sample in the scene. In our work
we include the scene information via the NOCS maps, thus
providing the absolute 3D position in the scene.

3D representation and localization of tactile signals.
The task of tactile signal localization involves accurately
determining the position of a query touch signal within a
scene. In [12], the problem is approached from an oppo-
site perspective, leveraging the generated tactile signal to
enhance the fine-grained reconstruction of 3D objects. In
[11], given an object’s mesh and different sensory observa-
tions of the contact position (such as visual images, impact
sounds, or tactile readings), the goal is to predict the ex-
act location on the mesh where the contact occurs using a
simple regression model. In [7], rather than directly retriev-
ing the touch location, a contrastive learning framework is
used as a lookup table to infer the position of the RGB cam-
era that captures the scene. In our work, we retrieve the
precise position of the touch query, by introducing a novel
contrastive learning framework that jointly aligns the tactile
and 3D representation domains.

3. Method
Starting from paired image and touch samples, our goal is
to:
1. register each pair of samples adopting an explicit 3D rep-

resentation;
2. obtain a scene-level NOCS descriptor;
3. generate the tactile signal for any point in the scene;
4. retrieve the accurate 3D position of a given touch sam-

ple.
As for the first task, we leverage Gaussian Splatting (GS)

[17], defined as F1 : V → (p,Σ, α, c). Given a video V
of a static scene, GS reconstructs a set of 3D Gaussians,
where each Gaussian is characterized by its position p =
(x, y, z), covariance matrix Σ, opacity α, and color c. From
GS, we generate an image I and the corresponding camera
parameters [R|t], which is registered to the collected touch
sample τ .

Next, given the explicit GS representation, we gen-
erate a scene-level Normalized Object Coordinate Space

(NOCS) [28] map η for each image I such that F2 :
(I, [R|t], p,Σ, α, c) → η.

To generate the missing touch samples of the visual 3D
model, we introduce a diffusion model [25] F3 : (I, η) → τ
that generates the tactile signal τ at the center of an image I .
funding, h We then define a contrastive learning framework
[2] F4 : τ → µ that aims to retrieve the 3D position of a
given query touch within the scene.

In the following sections, we describe in detail F1, F2,
F3, and F4.

3.1. Touch and Visual Signal Registration

We construct a visual 3D reconstruction F1 using Gaussian
Splatting (GS) from the video feed V of the scene. GS pro-
vides an explicit scene representation, as the position p of
all Gaussians is known.

In TaRF [7], tactile and visual signals are captured si-
multaneously using a DIGIT [19] touch sensor rigidly at-
tached to the RGB camera. To obtain the synthetic images
I , depth maps D and their corresponding camera parame-
ters [R|t] that are visually aligned with the touch samples
τ , the dataset leverages NeRF to synthesize virtual novel
views.

Since both the NeRF model and our GS representation
are derived from the same input images, the generated novel
views are aligned to both models. Consequently, the syn-
thetically generated images I are also well-aligned with our
3D model. We prefer to use these NeRF-generated images
rather than generating new ones with GS, because NeRF is
known to achieve superior image quality [36]. Thus, we ob-
tain images I , depth maps D and touch samples τ that are
registered to our GS.

3.2. Scene-Level NOCS Map Generation

We define a method F2 to explicitly compute a 3D repre-
sentation using scene-level Normalized Object Coordinate
Space (NOCS). The goal of the representation is to compute
2D NOCS maps η that are closely aligned with the images
I and touch samples τ . The 2D NOCS maps effectively act
as a 3D descriptor, binding the camera view I with the 3D
position of the touch sample τ .

Unlike the implicit NeRF representation which would
need a neural network to precisely estimate the NOCS rep-
resentation [22], our explicit representation enables precise
computation of scene-level descriptors.

The process, shown in Fig. 2, consists of four steps:
1. Outlier removal
2. Space normalization
3. Gaussian cloud recoloring
4. NOCS map generation

Outlier Removal. GS is optimized to obtain the low-
est possible Peak Signal-to-Noise Ratio (PSNR) on input
views, not on the 3D scene structure. This can result in
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Figure 2. Our scene-level NOCS map generation pipeline. We start with the Gaussian Splatting (GS) representation of the scene, which
initially contains outliers (left). The scene is refined and normalized within the NOCS framework (center), where each 3D position in
space is mapped to an RGB color sample for visualization. The Gaussian Splatting scene is recolored based on the NOCS representation,
allowing for the extraction of NOCS maps using the same camera parameters as the vision samples (right).

Gaussians, especially those in the background, being pro-
jected far from the scene center. Since tactile samples of
the background are unavailable in the dataset, we remove
all Gaussians whose position p is more than 0.5 meters away
from the closest available touch sample.

Space Normalization. Since NOCS [28] is defined
within a unit cube, we normalize each scene by scaling it so
that its smallest bounding box has a diagonal of length one.
This is achieved by selecting the minimum position as the
bottom corner and the maximum position as the top corner,
ensuring that the normalized positions pn of all Gaussians
vary between -1 and 1.

Gaussian Recoloring. Our representation allows each
Gaussian in the scene to be defined within the NOCS. We
recolor each Gaussian based on its normalized position,
modifying the representation to (p,Σ, α, c(pn)). This en-
sures that each Gaussian is colored according to its position
in normalized space.

NOCS Map Generation. To generate the NOCS map
η, we render an image of the recolored GS using the same
parameters [R|t] that were used to generate the correspond-
ing images I and depth map D. Thus, we obtain a tu-
ple (I,D, τ, η), where each touch sample and RGB image
refers to a NOCS map that encodes their displacement in
the 3D space, explicitly binding the two domains.

3.3. Missing Touch Generation

To estimate the touch signal (represented as a haptic map)
for any location in the scene, we train a diffusion model F3

to generate the tactile signal given the images I , depth maps
D and NOCS maps η extracted in previous steps.

Similarly to [7], we employ a stable latent generative
model [25] coupled with an autoencoder [5], as shown in

Figure 3. Our diffusion model for cross-modal touch generation.
The conditioning vector encapsulates the aligned RGB, depth and
NOCS maps to obtain the best possible representation of the novel
touch sample τ at position [R|t].

Fig. 3.
Unlike [7], the conditioning input of our diffusion model

does not rely on multi-scale input, which provide an approx-
imate and local 3D descriptor. Instead, we add the NOCS
map generated by F2, which provides a precise scene-level
descriptor. At training time, starting from gaussian noise
N (0, 1), the diffusion model is conditioned by the NOCS
map η, the RGB image I , the depth and the background
image (haptic map produced by the sensor when not in con-
tact) to try to estimate the haptic map τ .

At test time, given a novel location in the 3D scene, we
first render the RGB I and depth from the NeRF scene, and
the NOCS map η from the GS. We then use our diffusion



Figure 4. Our contrastive networks for 3D contact localization.
NOCS and touch are jointly train to obtain representative fea-
ture. At test time, given a query touch, the 3D contact localiza-
tion branch predicts the color that can be mapped to the 3D space
thanks to the NOCS map representation.

model F3 to estimate the haptic map τ .

3.4. 3D Touch Localization

The task of touch localization in a scene is often formulated
as a retrieval problem [7], where, given a query touch sig-
nal, the goal is to retrieve the closest image in the visual
domain. Since images in the visual domain have known po-
sitions obtained from the structure from motion, the touch
localization in 3D is taken as the RGB camera’s position,
and do not provide the exact touch position within the scene.
Moreover, as also noted in [7], the relation between a touch
sample and RGB camera location is not unique, as there
are multiple positions at the same distance from which the
touch sample can be collected. Instead, similar to touch lo-
calization on objects [11], our goal is to predict the precise
touch position in the scene given a query touch.

More formally, the task is defined as follows: given an
image I with its camera parameters [R|t], a tactile signal
τ , and the 3D representation of a scene (e.g., a point cloud
or Gaussian Splatting), the model must localize the contact
position on the 3D structure.

To achieve this, we introduce a contrastive learning
framework F4 based on SimSiam [2], shown in Fig. 4. The
objective of contrastive learning is to learn a representation
that captures the relationships between the tactile maps and
NOCS images, facilitating downstream tasks such as pre-
cise 3D localization. The training of our architecture is di-
vided in two steps. In the first step, we train our frame-
work, which consists of two branches—one for each do-
main. Each branch includes a backbone, a projection head,
and a prediction head. The training objective is to minimize
the negative cosine similarity between the two modalities:

L(η, τ) = − P(E(η))
||P(E(η))||2

· E(τ)
||E(τ)||2

(1)

where E(·) is the transformation applied by the backbone
and projection head and P(·) is the transformation applied
by the prediction head. In our case, each backbone consists
of ResNet18, each projection head is a Multi-Layer Percep-
tron (MLP) with 3 layers of size (512, 512, 128) and each
prediction head is another MLP of size (128, 64, 128). For
further details, refer to [2].

Most methods contrastively train the visual and tactile
domains [31, 33]. Differently, our approach jointly trains
NOCS and tactile domains, embedding the NOCS map in-
formation within the learned feature space. This is crucial,
as the NOCS map’s color coding precisely encodes the 3D
spatial position of the touch sample.

Thus, in the second step, given the latent space produced
by our contrastive methods, we employ as a color predictor
an MLP-based decoder to estimate the touch sample’s po-
sition in space as an RGB triplet. The ground-truth RGB
triplet corresponding to the touch location is obtained by
averaging the NOCS map colors, which can be uniquely
mapped to a 3D position in space. The color predictor MLP
consists of three layers with size (128,64,3) and is trained
using a standard L1 mean absolute error (MAE) loss.

At test time, given a query touch τ , the network predicts
the RGB triplet that corresponds to the position of a Gaus-
sian in the 3D space.

4. Experiments
Leveraging the global scene representation provided by
NOCS to unify the visual and tactile domains, we conduct
two lines of experiments: cross-modal touch generation for
novel views, and 3D touch localization.

4.1. Implementation details

Gaussian splatting We train our GS using the standard
SplatFacto-big model [27], with camera poses estimated
via structure-from-motion. We use the images provided by
TaRF [7], which amounts at roughly 1000 densely collected
RGB images per scene on a NVIDIA RTX 4090 GPU.

Diffusion model. The diffusion model is optimized on
each scene for 30 epochs by an Adam optimizer [18] with
learning rate 10−6 and batch size 16 on a NVIDIA RTX
4090 GPU. At inference time, we perform 200 denoising
steps with a 7.5 guidance scale. As common in cross-modal
synthesis works [7, 23], we apply re-ranking of samples, by
generating 16 images for each sample and picking the one
identified by the contrastive model with the highest quality
as our result.

Contrastive visual-NOCS-tactile model. The con-
trastive model is trained on samples from each scene, apply-
ing random augmentation [3] with a factor of 3 per sample.



Training is conducted for 100 epochs using an Stochastic
Gradient Descent (SGD) optimizer with a learning rate of
10−2 and a batch size of 8. After training the contrastive
model, its weights are frozen, and the MLP for color predic-
tion is subsequently trained for 1000 epochs using an SGD
optimizer with a learning rate of 10−3 and a batch size of 8.

4.2. Cross-modal touch generation

The goal is to evaluate the ability of our model to generate
a coherent haptic map for a novel viewpoint in the scene.
For the TaRF dataset, we follow the same train/test split as
in [7], thus each sequentially collected split of 50 samples
is divided between train, validation and test samples with
an 8|1|1 ratio. We use the standard metrics for the evalua-
tion: PSNR, Structure Similarity (SSIM) [14] and Frechet
Inception Distance (FID) [31]. All the metrics are computed
between the generated touch sample and the ground truth.

We compare our solution against 4 methods: VisGel
[21], VisGel(L1) as in [7], base TaRF [7] and custom
TaRF*. VisGel corresponds to the GAN-based model from
[21] and VisGel(L1) is the same model trained with an L1
loss. TaRF is the base diffusion-based model from [7],
while TaRF* is the same model trained on data for a sin-
gle scene. We train TaRF* on a single scene at a time to
make the setup comparable to ours. The numerical results
are obtained by averaging the results across the 16 training
scenes.

Quantitative results. The quantitative results are re-
ported in Table 1.

Our approach outperforms all other methods across all
evaluated metrics. It achieves superior results in pixel-wise
metrics such as PSNR and SSIM, which can be highly in-
fluenced by the generating position, as well as in the more
general FID score, a standard metric for cross-modal gen-
eration tasks to measure the distribution of the generated
data. TaRF*, trained on individual scenes, outperforms the
version trained on the entire dataset (TaRF), but nonethe-
less its reliance on depth maps as local descriptors leads to
weaker performance compared to our method, which ben-
efits from the scene-level NOCS maps for a more robust
representation.

Ablation studies. The quantitative results are reported
in Table 2. The full model corresponds to the experi-
ments incorporating re-ranking along with RGB, depth, and
NOCS map conditioning. Re-ranking provides a slight per-
formance improvement, demonstrating the model’s ability
to generate high-quality samples consistently. Removing
depth from the conditioning results in performance degra-
dation, indicating that a local descriptor still contributes to
overall estimation accuracy. Removing RGB information
leads to a decline in PSNR, as expected, given the cru-
cial relevance of visual information provided by the image.
Interestingly, removing the NOCS map slightly improves

Model Ref. PNSR ↑ SSIM ↑ FID ↓
VisGel(L1) [21] 24.34 0.82 97.05

VisGel [21] 23.66 0.81 130.22
TaRF [7] 22.84 0.72 28.97

TaRF* [7] 23.88 0.76 15.20
SplatTouch 30.19 0.84 10.06

Table 1. Quantitative results on cross-modal touch generation for
novel views. Our approach achieves a lower FID score by more
effectively preserving the distribution of real tactile data, while
still outperforming the baselines on low-level PSNR and SSIM
metrics.

Model PNSR ↑ SSIM ↑ FID ↓
Full 30.19 0.84 10.06

No re-rank 28.49 0.83 13.11
No Depth 29.21 0.83 11.75
No RGB 27.82 0.82 10.15

No NOCS 30.29 0.84 10.63

Table 2. Ablation studies for the touch generation task. We choose
the model with the lowest FID as it is the one capable of better
capturing the overall data distribution thanks to the NOCS.

PSNR, as the network faces an easier task, not having to
interpret the 3D position in space. On the other hand, re-
moving NOCS degrades FID performances, suggesting that
such information contributes to better capturing the overall
data distribution.

Qualitative results. We report the qualitative results of
our experiments in Fig. 5. Our model demonstrates en-
hanced generation capabilities compared to TaRF, produc-
ing outputs that maintain a closer structural resemblance to
the original sample. TaRF instead either blurs or overem-
phasizes finer details (see Fig. 5 columns 1-3 and column 4,
respectively). It is interesting to note that the performance
of both methods are comparable when the touch occurs on
a flat surface. However, our approach demonstrates signifi-
cant improvements in the presence of edges. This advantage
stems from the ability of NOCS to explicitly model the 3D
space, enabling the diffusion model to leverage this struc-
tured 3D information through its 2D representation.

4.3. 3D touch localization

Given a query touch sample, the goal is to predict its 3D po-
sition within the scene. To achieve this, we predict the RGB
triplet corresponding to a NOCS map. Thanks to our NOCS
mapping, this RGB value directly translates to a 3D position
in space, associated with a Gaussian. Our approach feeds
the query sample to the contrastive learning encoder to ob-
tain a latent representation that is fed to the MLP decoder



Figure 5. Qualitative results on the cross-modal touch generation task. Since the touched sample approximately corresponds to the center
of the RGB image, we have highlighted the touched area with a square for better visualization. Our model demonstrates an improved ability
to interpret the contextual information provided by the RGB images. For example, in the desk/keyboard sample, the surrounding context
appears similar, leading TaRF to generate nearly identical touch samples. In contrast, our method effectively captures the subtle variations
in texture and material, resulting in a more diverse and context-aware generation. A similar trend is observed in the edge/table/board
images, where our method successfully captures part of the board’s pattern. Notably, the board is a Braille surface used as a calibration
object with fine details in the dataset, further demonstrating our model’s improved ability to leverage fine-grained visual details to refine
touch predictions.

that predicts the RGB value. We evaluate our approach
against four baselines: (I) Random: we randomly select a
Gaussian in the 3D space and take its position as the pre-
dicted one. Notably, this differs from selecting a completely
random position in the scene, as Gaussians belong to touch-
able surfaces, (II) RGB+Touch: our MLP model trained
on features extracted via contrastive learning between the
visual and touch domains, (III) NOCS+Touch: our con-
trastive learning model trained only on real data, leverag-
ing the NOCS-touch relationship, (IV) NOCS+Touch (Aug-
mented): our contrastive method trained with additional
synthetic samples generated using our generative approach.
The augmentation consists of 25% additional samples per
scene (e.g., for the office scene, which originally has 1,000
touch samples, we generate an extra 250). For evaluation,
we measure the Euclidean distance between the predicted
touch position and the ground truth.

Quantitative results. The quantitative results are re-
ported in Table 3. (I) Random achieves the worst per-
formance, as randomly selecting a touch position is in-
effective. However, since the average scene size is ap-
proximately 2×2 meters and Gaussians are relatively dense,

Model Training data
Distance

(cm)
I Random - 56.47
II RGB+Touch Real 22.44
III NOCS+Touch Real 13.02
IV NOCS+Touch Real+Aug 11.65

Table 3. Quantitative results for the 3D localization of a touch
sample task.

the error does not escalate as dramatically as it would in
larger scenes. (II) RGB+Touch underperforms compared
to the other methods, as RGB images alone do not pro-
vide precise 3D positional information like NOCS maps
do. (III) NOCS+Touch improves upon (II), benefiting from
the structured 3D representation offered by NOCS. (IV)
NOCS+Touch (Augmented) surpasses (III), confirming that
our generative model effectively produces meaningful syn-
thetic samples, which further refine the 3D localization task.

Qualitative results. We show the qualitative results in
Fig. 6. Our method effectively retrieves the correct sample
position. Even when it fails, it still lands on surfaces of sim-



Figure 6. Qualitative results on 3D touch estimation task. On the left, the query samples, the relative NOCS and estimated errors. On
the right, their actual location in the scene as seen from different viewpoints. The colored cones ∆ represent the ground truth positions
and the cubes □ the predicted ones. Our framework consistently estimates the 3D position of query touch samples. The blue and green
samples in both scenes are predicted close to their real positions. However, the red sample highlights two areas for potential improvement,
primarily due to the noisiness of the Gaussian reconstruction. In the first scene, the position is predicted on the same material surface
but at a different location. This is likely caused by Gaussians at the center of the desk being reconstructed further away in the scene and
subsequently removed during the noise filtering step—an issue stemming from the challenge of reconstructing featureless surfaces. In the
second case, the Gaussian is projected far from the surface but is not filtered out in the noise removal step, resulting in the sample being
predicted further away than expected. Addressing these challenges could further refine the accuracy of 3D touch localization.

ilar material, indicating that the extracted features success-
fully capture both local sample relationships and broader
material properties. In the context of VR/AR/XR, our ap-
proach can be utilized to generate tactile signals for every
part of a touched scene, representing a step toward fully
touchable virtual environments. While this work presents a
complete processing pipeline for integrating touch and vi-
sion, a significant research gap remains in translating this
gathered information into usable haptic feedback for users,
which we aim to explore in future work.

5. Conclusions
We have presented a novel pipeline that integrates the touch
and visual domains through an explicit 3D representation.
We have demonstrated how this representation facilitates
tasks such as cross-domain tactile generation and 3D touch
localization. Our work takes a significant step towards cre-

ating scenes that can not only be seen but also touched, as
every point in the 3D scene can be mapped to a haptic map.
In future work, we aim to explore whether touch samples
can aid the RGB domain in creating more refined 3D repre-
sentations, such as GS and NeRF, at a micro level.

Limitations. Misalignment arising from multiple
sources, such as camera calibration, GS and NeRF, noise
removal and the data collection protocol, may affect the re-
sults. This issue can be addressed by designing sensors that
can jointly capture visual and tactile data in a sequential
manner, and would greatly be of help especially in the 3D
localization task.

Potential negative impact. The training data currently
available, is collected in an urban environment with a rela-
tively low diversity of materials; thus it may not fully repre-
sent a wide range of scenarios, potentially introducing bias
into the model.
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