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ABSTRACT

Motion retargeting requires to carefully analyze the differences in both skeletal structure and body
shape between source and target characters. Existing skeleton-aware and shape-aware approaches can
deal with such differences, but they struggle when the source and target characters exhibit signifi-
cant dissimilarities in both skeleton (like joint count and bone length) and shape (like geometry and
mesh properties). In this work we introduce MoMa, a novel approach for skinned motion retargeting
which is both skeleton and shape-aware. Our skeleton-aware module learns to retarget animations by
recovering the differences between source and target using a custom transformer-based auto-encoder
coupled with a spatio-temporal masking strategy. The auto-encoder can transfer the motion between
input and target skeletons by reconstructing the masked skeletal differences using shared joints as a
reference point. Surpassing the limitations of previous approaches, we can also perform retargeting
between skeletons with a varying number of leaf joints. Our shape-aware module incorporates a novel
face-based optimiser that adapts skeleton positions to limit collisions between body parts. In contrast
to conventional vertex-based methods, our face-based optimizer excels in resolving surface collisions
within a body shape, resulting in more accurate retargeted motions. The proposed architecture out-
performs the state-of-the-art results on the Mixamo dataset, both quantitatively and qualitatively. Our
code is available at: [Github link upon acceptance, see supplementary materials].

© 2024 Elsevier Ltd. All rights reserved.

1. Introduction

Motion retargeting between two characters has recently

gained popularity in computer vision and graphics (Chan et al.

(2019); Yang et al. (2020)), with applications ranging from an-

imation (Tak and Ko (2005)) to human-computer interaction

(Hecker et al. (2008)).

A character is commonly defined by a skeleton and a mesh,

modeling the animation rigging parameters and the body shape,

respectively. A skeleton consists of joints and bones, with its
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outermost parts often referred to as end-effectors (or leaf joints);

a mesh consists of vertices, edges and faces. To animate a char-

acter, the mesh surface is attached to an animated skeleton via

a process called skinning (Kavan (2014)).

In the domain of motion retargeting with unpaired motion

(Aberman et al. (2020)), the goal is to transfer movements from

one character to another while preserving the dynamics of the

motion without having neither the explicit mapping between

skeletons nor paired motion of the source and the target char-

acters. This retargeting procedure becomes more complex as

variations in skeletal structure and body shape between input

and target occur.

The common steps of motion retargeting consist of (I) trans-
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Fig. 1: Overview of the MoMa architecture. On the left: the skeleton-aware module can retarget motion between ’isomorphic’ (yellow), ’homeomorphic’ (orange)

as well as ’non-homeomorphic’ skeletons (green). On the right: after the skinning, the shape-aware module can adapt the skeleton position to avoid mesh collisions,

yet preserving the dynamics of the motion.

ferring the animation from the source to the target skeleton, (II)

bounding the mesh to the skeleton via skinning, (III) adjusting

the skeleton position to avoid interpenetration between parts of

the mesh, and (IV) optionally applying an interpolation filter

between frames to obtain a smooth motion. The retargeting

process is complex and time consuming, traditionally carried

out manually by 3D artists. Thus, researchers have started in-

vestigating the possibility to automate the motion retargeting

through neural approaches. Existing methods can be generally

grouped into two categories: skeleton-aware methods focus-

ing solely on the skeleton (Aberman et al. (2020); Lim et al.

(2019); Villegas et al. (2018)), and shape-aware methods, that

also consider the body shape (Zhang et al. (2023); Villegas et al.

(2021)).

Skeleton-aware methods model skeletons as graphs with di-

verse topologies. An input and a target skeleton are home-

omorphic when they share the same number of end-effectors

and have different topology. They are considered non-

homeomorphic when they don’t. Isomorphic skeletons are

homeomorphic skeletons that, additionally, also share the same

number of joints. In contrast to existing methodologies de-

signed to handle only isomorphic skeletons (Villegas et al.

(2018, 2021); Zhang et al. (2023); Lim et al. (2019)) or home-

omorphic ones (Aberman et al. (2020)), our approach can also

deal with non-homeomorphic skeletons.

Shape-aware methods optimize the motion considering body

shapes as meshes with faces and vertices. The mesh skinning

for each frame of an animation might result in collisions be-

tween body parts, which need to be solved to obtain a good re-

targeted motion. While available methods (Zhang et al. (2023);

Villegas et al. (2021)) use vertices to solve collisions, we use

faces instead. Resolving collisions at face level minimizes

unwanted mesh surface deformation: in fact, vertices might

respond individually to collision detection, leading to erratic

movements or distortions in the mesh.

With MoMa, we propose a novel approach that handles dis-

parities in both skeleton and shape domains for motion retarget-

ing, as shown in Fig. 1.

In the skeleton-aware module, our new pose masking auto-

encoder can retarget motion between isomorphic, homemor-

phic and non-homeomorphic skeletons. To do so, we draw in-

spiration from masked image modeling (He et al. (2022); Xie

et al. (2022); Tong et al. (2022); Feichtenhofer et al. (2022))

used in transformer auto-encoders (Dosovitskiy et al. (2020);

Vaswani et al. (2017)) to reconstruct masked portions of the in-

put data, extending the same principle to skeleton motion mod-
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eling. In our approach, we predict the missing joints in the tar-

get skeleton similarly to how masked patches are reconstructed

starting from visible ones. Our approach aims at providing

a simple baseline for motion retargeting that alleviates all the

complexities of previous state-of-the-art methods, like the need

for sophisticated cycle consistency or adversarial loss (Zhang

et al. (2023); Villegas et al. (2021)), while outperforming them.

We believe that masked transformers can be more suitable for

the task compared to the previous proposed architectures, un-

locking new possibilities, such as motion retargeting between

non-homeomorphic characters.

In the shape-aware module, our method solves collisions

between body parts through a quasi-Newton face-based opti-

mizer, outperforming existing vertex-based methodologies. In-

spired by SMPL approaches (Pavlakos et al. (2019); Tzionas

et al. (2016)), we develop an optimizer that can selectively solve

collisions for a variety of different complex meshes.

The novelties of our work can be summarised as follows:

• we propose a novel pipeline for skinned motion retarget-

ing, which is both skeleton-aware and shape-aware;

• we propose the first motion retargeting approach that deals

with non homeomorphic skeletons without paired motion;

• we introduce a novel pose masking auto-encoder to re-

construct absent joints in the target;

• we implement a novel a face-based optimizer to solve

collisions in the body mesh, which is a more consistent and

precise approach compared to vertices-based solutions;

• we obtain state-of-the-art results on motion retargeting on

the Mixamo dataset (Adobe (2020)) and provide a frame-

work for transferring the motion from real videos to syn-

thetic characters.

2. Related work

Masked modeling for representation learning. Masked

language modeling (Devlin et al. (2018); Liu et al. (2019)) and

masked image modeling (Xie et al. (2022); He et al. (2022); Bao

et al. (2021); Dosovitskiy et al. (2020); Chen et al. (2020); Xie

et al. (2022)) have recently demonstrated how self-supervised

approaches can achieve better performances compared to fully

supervised ones, making them scalable representation learners

for multiple tasks. Among image-based approaches, SimMIM

(Xie et al. (2022)) has proven to be a simple yet effective strat-

egy, masking image patches by replacing them with random to-

ken vectors of the same dimension. In the video domain, where

data is not only spatially but also temporally correlated (Tong

et al. (2022); Feichtenhofer et al. (2022)), the relationship be-

tween tokens is strong enough to allow the network to recon-

struct the input with up to 90% of masked frames.

In our solution, we apply a similar strategy by randomly

masking a subset of skeleton joints both in space and time,

demonstrating the effectiveness of the learned skeleton repre-

sentation on the motion retargeting task. In the pose domain, it

is crucial to accurately model the relationships between joints, a

task that holds greater significance than modeling dependencies

between patches in the image domain. This distinction arises

because an image patch encapsulates considerable information

from multiple pixels, whereas each joint is characterized by a

limited set of numerical values representing positions or rota-

tions.

Skeleton-aware motion retargeting. Skeleton-based mo-

tion retargeting aims at transferring the motion from an input

skeleton to a target one (Zhang et al. (2023); Villegas et al.

(2021); Lim et al. (2019); Villegas et al. (2018); Lee et al.

(2023)). Input and target skeletons can be isomorphic, home-

omorphic or non-homeomorphic. A basic approach to mo-

tion retargeting between isomorphic skeletons is the so-called

copy rotation; starting from a common pose (usually the T-

pose), the rotations from one skeleton are copied to another

one, without taking care of changes in scale or bone length,

as described by Aberman et al. (2020). Most approaches (Lim

et al. (2019); Villegas et al. (2018); Zhang et al. (2023); Vil-

legas et al. (2021); Lee et al. (2023)) can retarget unpaired

motion between isomorphic skeletons, but cannot generalize to

homeomorphic ones. The work by Aberman et al. (2020) intro-
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duces a Skeleton-Aware Network (SAN) for motion retargeting

between homeomorphic skeletons. In Lee et al. (2023), they

solve various animation tasks in a skeleton-agnostic manner,

also tackling the retargeting between isomorphic and homeo-

morphic skeletons. However, both methods cannot general-

ize to non-homeomorphic skeletons with different topologies

where the number of leaf joints changes. Motion retargeting

with non-homeomorphic skeletons has been investigated in the

past with non-neural approaches (Yamane et al. (2010); Seol

et al. (2013)), relying on paired motions or explicit skeleton

mappings.

To the best of our knowledge, our proposed solution is the

first one that can deal with skeleton-based motion retargeting

between non-homeomorphic skeletons without paired motion

or ad-hoc mapping.

Shape-aware motion retargeting. Meshes are fundamen-

tal when evaluating the animation retargeting performances be-

tween two characters. The first methods dealing with skinned

characters (Villegas et al. (2018); Lim et al. (2019)) cannot be

considered shape-aware because they do not consider the char-

acter’s mesh to optimize the motion retargeting, resulting in un-

realistic movements of skinned characters. Neural Kinematic

Networks (NKN) by Villegas et al. (2018) and PMNet by Lim

et al. (2019) use simple Linear Blend Skinning (LBS) (Kavan

(2014)) before evaluating their performances on the retargeted

body shape. More recent methods (Zhang et al. (2023); Ville-

gas et al. (2021)) can be considered shape-aware because they

explicitly include the mesh in the retargeting process. Other

methods tackle either the motion generation task starting from

the mesh generation Yang et al. (2024) or the human motion

transfer between meshes Regateiro and Boyer (2022); Chen

et al. (2021). Shape-aware methods aim to avoid mesh inter-

penetration by detecting contacts between different parts of the

mesh using vertices (Villegas et al. (2021); Zhang et al. (2023)).

The work proposed by Villegas et al. (2021) focuses on de-

tecting contacts between different parts of the mesh, as well

as foot-ground contact using an encoder-decoder network op-

timisation. Zhang et al. (2023) define a skeleton-aware and a

shape-aware module, the latter being trained employing an at-

tractive/repulsive field mechanism to solve collisions, while ad-

hering to the target motion. Despite the ability to generalise to

diverse body shapes, this solution only solves body-limbs col-

lisions but not limbs-limbs nor body-body ones.

In a similar fashion to (Pavlakos et al. (2019); Tzionas et al.

(2016)), we introduce a generalized face-based optimizer to

solve all possible collisions.

3. Method

We present MoMa, a novel skeleton-aware pose masking

auto-encoder combined with a shape-aware face-based opti-

mizer to tackle the skinned motion retargeting task.

Given a set of possible characters C = {C1, . . . ,Ck, . . . ,CK},

our goal is to retarget the motion A from an input character Ck

to a different one Ct.

The motion retargeting from Ck to Ct follows these steps:

1. Skeleton motion retargeting. We perform the retargeting of

the chosen motion from the input skeleton of Ck to the tar-

get skeleton of Ct using our skeleton-aware pose mask-

ing auto-encoder.

2. Skinning and collisions detection. For each frame of the

retargeted animation A, we apply Linear Blend Skinning

(LBS) to attach the target mesh of Ct to the retargeted

skeleton. Then, we detect collisions between mesh parts,

which correspond to possible interpenetration and arti-

facts.

3. Mesh optimization to solve collisions. We adapt the joints

positions of the skeleton to minimise the collisions of the

mesh of Ct using our shape-aware face-based optimizer.

The mathematical notation for the motion representation and

the detailed implementation of each step is further explained in

the next paragraphs.

Character representation. Each character is represented by

a skeleton (S k,Qk) and a mesh Mk, as described in Fig. 2. The

skeleton is divided into a static representation S k and a motion

representation A(Qk). The static representation S k contains the
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Fig. 2: Animation representation. Each skeleton can be represented as a graph with n ∈ [1,Nk] nodes (joints) where the parents-child relationship is defined by

the kinematic chain. Moreover, each skeleton is described by a static representation S k containing the offsets (bone lengths), and a motion representation A(Qk).

offsets between joints. Instead, Qk represents the motion repre-

sentation at a specific frame of the animation. It consists of Nk

joints (nodes) and each joint jn is expressed as a 4D quaternion,

to describe the relative rotation with respect to the parent joint

in the skeletal hierarchy. The mesh in T-pose to be skinned to

the skeleton is defined as Mk. While the static representation S k

does not vary for a character during an animation, the motion

representation A(Qk) and the mesh Mk are subject to changes to

obtain the animation.

Animation representation. An animation is composed by

three main parts:

• S k (Static Representation). This component contains in-

formation about the offsets and inherently includes the

skeleton’s topology information, such as the edges. The

static representation remains constant and serves as the

structural framework for the skeleton. S k is a N ×d vector,

where N is the number of joints, and d = 3 represents the

xyz coordinates.

• A(Qk) (Motion Representation). This component in-

volves the rotations expressed using quaternions. These

rotations change over time, creating the animation by driv-

ing the movements of the skeleton. The motion representa-

tion is dynamic, as it varies with each frame of the anima-

tion sequence. A(Qk) has dimensions N × w × d, where N

is the number of joints, w is the window length and d = 4,

since the motion is expressed in quaternions format.

• Mk (Mesh Representation). This component represents

the mesh of the character. Through the skinning process,

the animation of the skeleton is bound to the mesh. As

the skeleton moves, the mesh vertices change position,

making the mesh dynamic and altering its shape over the

course of the animation. Mk is expressed as a set of ver-

tices, with each vertex having its own xyz coordinates,

whose dimension is Nv × d, where Nv is the number of

vertices and d = 3.

In summary, the static representation (S k) remains constant,

providing the structural framework of the skeleton. The mo-

tion representation captures the dynamic rotations that drive the

animation, while the mesh representation (Mk) changes as the

skeleton moves, reflecting the animated character’s shape.

We define A((S k,Qk),Mk) as the motion (animation) of the

input character Ck to be retargeted. Our goal is to obtain

A((S t,Qt),Mt), which corresponds to the same motion applied

to the target character Ct. The length of the animation is a win-

dow of size w ∈ [1,W] frames. We define the skeletal-only mo-

tion as A(S k,Qk), namely the same motion without the mesh

component. We can further divide the skeletal motion between

the skeletal motion representation A(Qk), that consists of a vary-

ing Qk for each of the W frames, and the static representation

S k.
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Fig. 3: Skeleton-aware pose masking auto-encoder. Starting from an input animation A(Qk), an encoder embeds each input joint into a set of tokens Ek . Next,

we randomly mask (black squares) a subset of Ek and concatenate the remaining missing joints to include all the possible topologies, resulting in EM
C . To model

the relationships between the embedded joints in EM
C , we add a spatio-temporal positional embedding εN + εW . To this representation, we concatenate the

learnable token S k representing the static information to form the input of the encoding transformer. The latter learns to map the masked input to a latent feature

representation containing the embedded motion EC , where all the masked joints have been predicted. Finally, the decoder extracts the super-skeleton motion A(QC)

from the latent space using the learnt token (S k at training time and S t at test time), from which we can derive the reconstructed input motion A′(S k ,Qk) and the

retargeted motion A(S t ,Qt). We train our auto-encoder to predict the masked joints by enforcing a MSE loss between the input A(S k ,Qk) and the reconstructed

A′(S k ,Qk).

3.1. Skeleton-aware pose masking auto-encoder

In the following paragraphs we describe in detail the main

components of our transformer-based auto-encoder architec-

ture, illustrated in Fig. 3.

Objective. Given a skeletal motion A(S k,Qk) on an input

character Ck, our pose masking auto-encoder performs the re-

targeting to obtain the same motion A(S t,Qt) in a target skele-

ton format of the character Ct.

Encoder. Since transformers process chunks of data (to-

kens) such as words in NLP (Vaswani et al. (2017)), or image

patches in computer vision (Dosovitskiy et al. (2020)) within

their multi-headed architecture, we apply a similar strategy

by tokenizing the dynamic part A(Qk) of the input animation.

Thus, for every frame w of A(Qk), we embed each joint jn of

Qk as a token. The embedding is applied to each joint using a

single linear layer followed by a Leaky ReLU to obtain a vector

of size d for each joint. After the tokenization, each embedded

animation Ek sequence has dimensions W × Nk × d.

Pose masking strategy. In analogy with image-based mask-

ing approaches (Tong et al. (2022); Feichtenhofer et al. (2022)),

also in our case the goal is to train an auto-encoder by taking as

input masked data and reconstruct the missing parts of it. Given

an embedded animation Ek of size W × Nk × d, we mask a sub-

set of joints M to obtain the masked embedded animation. As

introduced by Xie et al. (2022), we replace each masked token

with a vector of the same size d, which can contain different

values depending on the chosen masking strategy.

Next, we concatenate a set of NC − Nk empty tokens to the

masked embedded animation joints to obtain EM
C , where NC

represents the set of all possible joints in the skeletons of char-

acters in C. This operation ensures that every possible input an-

imation can be mapped into a latent representation big enough

to contain all the possible skeleton topologies in C. The latent

representation EM
C has size W × NC × d and each token is ini-

tialised as a masked vector of size d.

Spatial-temporal positional embedding. The purpose of

the spatial-temporal positional embedding is to enable the net-

work to learn the inter-dependencies among tokenized joints.

Similarly to Feichtenhofer et al. (2022), we adopt two separa-

ble positional embeddings, in the spatial and in the temporal

domains, respectively. The goal of the spatial embedding εN is

to learn the hierarchical graph representation shown in Fig. 2 of

the NC joints for all the possible characters C. The goal of the

temporal embedding εW is to learn the spatial relation between

the dynamic part of the skeleton Qk over the w ∈ [1,W] time

frames.

The spatial embedding εN with dimensions NC × d models

the spatial relations between joints, and it is repeated for each

of the W frames. The temporal embedding εW with dimensions

W × d models the time relationship between frames, and it is
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repeated for each of the NC joints. The total spatial-temporal

embedding is given by εN + εW , with dimensions W × NC × d.

The spatial-temporal embedding is added to the embedded an-

imation to retain positional information. This separable imple-

mentation prevents the size of positional embeddings growing

too large in 3D. Similarly to Dosovitskiy et al. (2020), the val-

ues for both εN and εW are learnable.

Encoding transformer. The input of the encoding trans-

former is the motion sequence plus the spatial-temporal encoder

expressed as EM
C +εN+εW . To this input, we concatenate a learn-

able token vector S k of size d that models the static part of the

skeleton for each possible character in C. The transformer is a

custom ViT architecture (Dosovitskiy et al. (2020)), with dif-

ferent activation functions and number of attention heads that

process spatio-temporal joints information. At the output, the

latent space contains the embedded reconstructed motion EC .

Decoder. Similarly to Xie et al. (2022), our prediction head

(decoder) is replaced by a simple linear layer. The output of

the linear layer is an animation A(QC) which can be seen as the

animation of a super-skeleton QC containing all the possible

topologies in C.

At training time, from A(QC) we need to extract the motion

A′(Qk), which corresponds to the input motion A(Qk) as recon-

structed by the auto-encoder. This is possible thanks to the

learned static token S k, which acts as a selector for the joints

corresponding to a given character. The network is trained to

reconstruct all the input joints (both masked and unmasked) us-

ing the Mean Square Error (MSE) loss on each single frame of

the animation. The training loss is defined as:

LMS E(A(Qk), A′(Qk)) =
∑W

w=1
∑Nk

n=1(FK(S k, jn) − FK(S k, j′n))2

W × Nk
(1)

where jn and j′n are the n-th joints of a frame w of A(Qk) and

A′(Qk), respectively, and FK(−) represents a Forward Kine-

matic layer (Aberman et al. (2020)) that allows to express the

joints as 3D spatial positions computed from the quaternions.

Similarly to Aberman et al. (2020), the loss is not enforced di-

rectly on the quaternions in order to avoid accumulation of er-

ror along the kinematic chain. This is possible as the loss is

enforced over the joint position.

At test time, given the reconstructed super-skeleton motion

A(QC) we obtain the motion A(Qt) for each of the possible

skeletons Qt by applying the same Forward Kinematic layer

such that A(S t,Qt) = FK(S t, j′n).

3.2. Shape-aware face-based optimizer

For our shape-aware module, we design a face-based opti-

mizer that applies an iterative process to obtain a refined ani-

mation as shown in Fig. 4. Inspired by Pavlakos et al. (2019),

we design a quasi-Newton optimizer that applies to any mesh

with triangular faces. Differently from neural vertex-based ap-

proaches (Zhang et al. (2023); Villegas et al. (2021)), our opti-

mizer starts from triangular faces of the mesh to build 3D vol-

umes, as shown in Fig. 5.

In the following paragraphs we describe the details of each

module.

Skinning. Starting from the retargeted skeletal motion

A(S t,Qt), we apply the skinning process to the target mesh Mt

and skeleton (S t,Qt) for each frame to obtain A((S t,Qt),Mt).

A target mesh in T-pose is defined by its vertices v. The target

mesh Mt in a different pose (S t,Qt) is defined by its vertices v′,

which positions can be computed by a linear transformation of

the vertices v, called Linear Blend Skinning (LBS) (See Sup-

plementary Materials).

By adjusting the positions of the joints jn of the motion rep-

resentation Qt, the optimizer can adapt the positions of the ver-

tices v′ of the mesh Mt to avoid collisions and obtain the result-

ing A((S t,Qt),Mt).

Collision penalizer. Given A((S t,Qt),Mt), we detect all the

colliding triangles ∆((S t,Qt)) of vertices using Bounding Vol-

ume Hierarchy (Karras (2012); Pavlakos et al. (2019)). Dif-

ferently from vertex-based approaches, which directly operate

on the colliding vertices (Zhang et al. (2023); Villegas et al.

(2021)), we build a conic 3D volumetric distance field Ψ on the

external face of each triangular vertex face ∆Ψ and its normal

vector ν̂. Given two colliding triangles, ∆i and ∆r the interpen-

etration is defined as bi-directional, where the vertices vi of ∆i
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Isomorphic

Methods MSE FIE%↓ SCE↓

GT (Mixamo) - 4.10 -

Copy 0.045 3.23 0.145

Skeleton-

aware

NKN* 0.575 - -

PMnet* 0.281 - -

SAN 0.141 1.53 0.216

SAME 0.176 1.21 0.213

Ours (no opt) 0.043 3.13 0.134

Shape- aware

R2ET 0.042 3.96 0.166

SAN opt 0.163 1.02 0.166

Ours 0.049 1.01 0.049

Table 1: Results for the retargeting between isomorphic skeletons.

Homeomorphic

Methods MSE FIE%↓ SCE↓

SAN 0.108 1.25 0.135

SAME 0.122 1.12 0.137

Ours (no opt) 0.025 3.6 0.090

SAN opt 0.117 0.91 0.106

Ours 0.031 0.9 0.028

Table 2: Results for the retargeting between homeomorphic skeletons.

are the intruders of the distance field Ψ∆r of the receiver trian-

gle ∆r, and vice-versa. The collision term ξ to be minimised is

defined as:

ξ(S t,Qt) =
∑

(∆i,∆r)

{ ∑
vi∈∆i

|| − Ψ∆r (vi)ν̂i||2 +
∑
vr∈∆r

|| − Ψ∆i (vr)ν̂r ||2
}
(2)

The collision term ξ(S t,Qt) indicates how much two vol-

umetric distance fields built on faces are colliding. Being

grouped in triangular faces, a vertex cannot respond individ-

ually to a collision, leading to an improved mesh consistency.

For further mathematical details please refer to Pavlakos et al.

(2019); Tzionas et al. (2016).

To help the optimization process we need to detect and ex-

clude self-contacts (e.g. eyes colliding with the skull) from the

collision term. Similarly to Villegas et al. (2021), and differ-

ently from the SMPL approaches where the self-contact points

are consistent, we do not have any prior of the body shape be-

cause the characters in the available datasets have a much wider

spectrum of possible meshes with highly varying features (e.g.

hair, clothes, accessories). Thus, we need to detect and filter

out all the self-contacts for each mesh Mk. To do so, we set all

the input meshes in T-pose and we exclude the collisions be-

tween all the body parts with self-contacts from the collision

term. Moreover, we also filter out collisions between meshes

of neighbor body parts in the kinematic chain (e.g. neck and

torso) and self-collisions between parts of the same limb (e.g.

the upper arm and the lower arm).

Optimization. We choose a Limited-memory BFGS opti-

mizer (L-BFGS) (Nocedal and Wright (1999)) because it is a

quasi-Newton method that approximates the BFGS algorithm,

a highly efficient tool for optimizing smooth, convex functions.

It is used to optimize the following loss for each frame of the

animation:

LO(S t,Qt) = λξ(S t,Qt)+ (1−λ)LMS E((S t,Qt), (S t,Qt−1)) (3)

where λ is the balancing weight of the loss and (S t,Qt−1) rep-

resents the same skeleton at the previous time step. The term

ξ(S t,Qt) aims at solving the collisions, while the second term

LMS E aims at providing consistency between frames and en-

forcing the motion to be as close as possible to the input.

Thus, the optimizer learns to adapt the skeleton Q(S t,Qt) to

minimise both terms, to obtain A((S t,Qt),Mt) and preserve the

dynamics of the input motion without collisions.

4. Experiments

To evaluate MoMa, we perform the retargeting between

isomorphic, homeomorphic and non-homeomorphic characters

with varying body shapes. Throughout the result section we use

Ours (no opt), when referring to MoMa with only the skeleton-

aware module, while Ours corresponds to the full approach,

which also includes the shape-aware optimizer.

Datasets. We evaluate MoMa on the Mixamo dataset (Adobe

(2020)). For the retargeting between isomorphic skeletons, we
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Fig. 4: Shape-aware face-based optimizer. (a) Given the retargeted skeletal mo-

tion A(S t ,Qt) and the corresponding mesh in T-pose, we apply the skinning to

obtain the full animation A((S t ,Qt),Mk). (b) During each iteration the mesh can

display collisions, which (c) are detected and weighted by the collision penalizer.

The face-based optimizer minimizes the loss Lo(S t ,Qt) by adapting the skeleton

position (S t ,Qt) until obtaining (d) a retargeted motion without collisions.

Fig. 5: (a) Vertex-based methods use a global distance field be-

tween each vertex and the others, thus providing a computation-

ally expensive one-to-many metric. (b) Face-based methods iden-

tify collisions with colliding triangle surfaces, thus a more effi-

cient one-to-one metric.

follow the same setup as Zhang et al. (2023) and Villegas et al.

(2018), collecting 7 characters for training and 11 for testing.

For homeomorphic skeletons, we follow the same protocol as

in Aberman et al. (2020), but for 3 characters (Liam, Pearl and

Jasper), which are no more available on Mixamo. For non-

homeomorphic skeletons, we selected 2 CC-Licensed charac-

ters available on Sketchfab, animated using Mixamo, and we

combined them with the characters used for the isomorphic ex-

periments. In all scenarios, we use an average of 1250 motions

for each training character, 100 for validation, and 60 motions

for each test character. The test set contains seen and unseen

characters with only unseen motions. Given the encountered in-

consistencies of the train/test splittings of the Mixamo dataset

for different methods (Zhang et al. (2023); Lim et al. (2019);

Villegas et al. (2018); Aberman et al. (2020)), we provide the

full list of characters and animations used in training and testing

in the Supplementary Materials, hoping to establish a relevant

baseline for future research.

Furthermore for non-homeomorphic character, we utilize

two datasets: the Ubisoft La Forge Animation Dataset

(LAFAN1) from Harvey et al. (2020), and the quadruped

dataset presented in Zhang et al. (2018). The LAFAN1 dataset

comprises human motion data, featuring 5 subjects and 77 dif-

ferent motion sequences. In contrast, the quadruped dataset

includes 52 unique sequences of dog motions, encompassing

various activities such as idle, walk, run, sit, stand, and several

jumps.

We test our method also on the Carnegie Mellon University

(CMU) Motion Capture Database CMU. This dataset captures

real human motion with 144 actors performing a diverse ar-

ray of movements. Unlike the Mixamo dataset, where retar-

geting is performed by copying rotations, the CMU dataset is

collected using an Optical Motion Capture System. This in-

troduces a more complex scenario due to the presence of real

actors, each exhibiting unique movement patterns and behav-

iors, aspects that the Mixamo dataset does not account for due

to its reliance on copy rotation.

Quantitative evaluation of retargeting between the CMU and
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Source Copy SAN R2ET Ours (no opt.) Ours

Fig. 6: Qualitative results for the retargeting between isomorphic skeletons. Our method (last column) successfully minimizes the Skeleton Collision Error (SCE)

compared to state-of-the-art results.

Mixamo datasets is not feasible since the motions in these

datasets are not paired. Instead, we focus on the network’s

ability to reconstruct segments of the input real motion. This

approach simulates optical capture sessions where occlusions

may lead to undetected markers, resulting in non-smooth ani-

mations. By showcasing our network’s capacity to reconstruct

motion segments from noisy observations, we emphasize its po-

tential to enhance the post-processing of motion capture data.

Implementation details. Our auto-encoder is trained using

PyTorch Lightning on a single NVIDIA RTX 3090. The token

vector representing each joint has size d = 192, the transformer

has 4 heads and the activation function is a Leaky ReLu both in

the encoder and the transformer. At training time, we randomly

mask a subset of M = 10 joints for the Mixamo dataset. Dur-

ing training, we set the following hyper-parameters: 25 epochs,

learning rate 2e−4, exponential LR scheduler with γ = 0.95,

batch size 64, and Adam optimizer without weight decay. The

optimizer parameters are the same as Pavlakos et al. (2019) and

λ = 0.7. As Aberman et al. (2020), we set the window length

to W = 64.

Evaluation metrics. To evaluate the performances of our ap-

proach we use the Mean Square Error (MSE) between joints for

each frame of an animated skeleton. Similarly to Aberman et al.

(2020); Zhang et al. (2023), the MSE is calculated aligning the

root of the retargeted motion to the ground truth (GT), normal-

izing by each character height. The Mixamo dataset does not

always provide clean GT; in fact, in a few cases, we noticed that

the motions display interpenetration or contact-missing issues.

Thus, a low MSE does not necessarily guarantee an accurate

retargeting without collisions (Zhang et al. (2023)).

Therefore, to provide a more comprehensive evaluation, we

introduce the Face Interpenetration Error (FIE) indicating the

percentage of faces colliding in a given animation as:

FIE =
1
W

W∑
w=1

#∆(S t,Qt)
#F(Mt)

% (4)

where W is the number of frames of the animation, #∆(S t,Qt)

is the number of colliding faces and #F(Mt) is the number of

total faces of a mesh.

In an ideal scenario, retargeting would return a score equal to

0 for both MSE and FIE. However, in practice, achieving this is

not possible, as reducing MSE often leads to an increase in FIE

and vice versa. Thus, combining both the skeleton-based met-

ric MSE and the shape-based FIE, we propose a comprehensive

metric, which takes into account both collisions and joints er-

rors, called Skeleton and Collisions Error (SCE) computed as

S CE = MS E × FIE. In designing the SCE, we aimed to cap-

ture the dependency between the skeletal and shape aspects of

motion retargeting. Choosing a weighted sum, multiplication,

or another relation for the SCE is a matter of preference and

does not alter its fundamental significance.
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Source SAN Ours

Fig. 7: Qualitative results for the retargeting between homeomorphic skele-

tons.

Source Ours St1 Ours St2

Fig. 8: Qualitative results for the retargeting between non-homeomorphic

skeletons.

4.1. Quantitative results

Isomorphic skeletons. We report the quantitative results for

the retargeting between isomorphic skeletons in Tab. 1 with

Nk = 22, Nt = 22 and NC = 25. We compare against

both shape-aware and skeleton-aware methods. We run copy-

rotation, SAN (Aberman et al. (2020)), SAME (Lee et al.

(2023)) and R2ET (Zhang et al. (2023)) on our data for fair-

ness. For the GT data, we report the FIE, indicating the number

of collisions happening, further demonstrating the limits of the

Mixamo dataset. Looking at the MSE values, both our method

and R2ET outperform the baseline copy-rotations, meaning that

they can better retarget the skeletal animation between input

and target character. However, the MSE does not provide a

comprehensive evaluation metric, since low values can corre-

spond to many collisions in the mesh. Looking at the FIE, our

non-optimised skeleton-aware module already achieves state-

of-the-art performances, with a similar MSE and a lower num-

ber of collisions compared to all other approaches, meaning

that the low MSE corresponds to a good retargeted motion with

fewer collisions than other approaches. For fairness, we ap-

ply our shape-aware module on top of SAN method (denoted

as SAN opt), the number of collisions decreases. This proves

that our skeleton-aware and shape-aware modules are effec-

tive independently and can be utilized separately. Looking at

the combined metric SCE, our optimized approach with both

the skeleton-aware and shape-aware method obtains the low-

est number of collisions, while maintaining a pose closer to the

original, indicating the best retargeted motion.

Homeomorphic skeletons. We report the quantitative re-

sults for the retargeting between isomorphic skeletons in Tab. 1

with Nk = 22 and Nt = 25 or vice-versa Nk = 25 and Nt = 22,

and NC = 25. We compare with SAN, the only other method

able to deal with homeomorphic skeletons. Our approach out-

performs SAN across all the metrics, thus achieving motions

with less collisions and better preserving the semantics of the

original ones, using either our skeleton-aware module or com-

bined with the shape-aware one.

Motion Reconstruction. We evaluated our approach using

the CMU dataset, which comprises real motion capture data

from a diverse group of actors performing a wide range of mo-

tions. This evaluation on a realistic and varied dataset allows us

to validate our method comprehensively, in contrast to the Mix-

amo dataset, which involves motion generated through copy ro-

tation between characters.

Due to the absence of paired motions between the CMU and

Mixamo datasets, we assessed our network’s ability to recon-

struct the original data by masking various joints. This process

simulates real capturing sessions, where researchers may face

challenges such as occlusions or prediction errors. As shown in

Table 4, our network effectively reconstructs real motion cap-
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M Masking Strategy Encoding

5 0.095 zero 0.043 No encoding 0.524

10 0.043 random 0.095 εJ 1.025

15 0.094 perturb 1.025 εW 1.450

εJ + εW 0.043

Table 3: Ablation studies on the MSE value for our skeleton-aware mod-

ule. Each column refers to a different experiment: masking of M joints

(left), changing the masking strategy (center), ablating the embeddings

(right). In bold our best configuration.

Fig. 9: Ablation studies for the λ value in the shape-aware mod-

ule. The best results are indicated by points closer to the ori-

gin; we can see that our MoMa can outperform both shape-aware

(R2ET) and skeleton-aware (SAN) methods depending on the

value of λ. We obtain our best result with λ = 0.7.

ture data, yielding results consistent with those obtained from

the Mixamo dataset. We observed similar performances on the

LAFAN1 dataset, further corroborating the robustness and gen-

eralization abilities of our approach.

Dataset Masked Joints MSE

LAFAN1

5 0.042

8 0.032

10 0.050

15 0.070

CMU

5 0.047

8 0.035

10 0.081

15 0.15

Table 4: Results on LAFAN1 and CMU dataset with different number of

masked joints.

4.2. Qualitative results

We provide a demo video, showcasing the results of the

motion sequence retargeting for all the possible scenarios,

with many different characters at the following link (https:

//youtu.be/gWQJlltQGnQ).

Isomorphic skeletons. In Fig. 6, we report the a subset

of the qualitative results for our approach, compared to copy-

rotations, SAN, and R2ET.

In the first row, we show how other methods such as copy-

rotations and SAN cannot fully solve the collisions between the

hands. R2ET solves the collisions, but spreads the hands far

apart from each other, losing the original dynamics of the mo-

tion. Our shape-aware module is able to refine the retargeting of

the skeleton-aware module and avoid interpenetrations between

limbs, resulting in a collision-free motion, while preserving the

original poses.

In the second row, we provide further evidence that our face-

based method can better solve the collisions with respect to

other methods, being the only one able to avoid interpenetra-

tions between the arm and the head.

Homeomorphic skeletons. In Fig. 7, we show how, being

shape-aware, our method can avoid interpenetrations compared

to the skeleton-aware SAN. It is worth noting that there is a

large variation in both the skeleton and the shape, a challenging

scenario that causes ambiguities in position of the arm, also

visible in the source taken from Mixamo.

Non-homeomorphic skeletons. In Fig. 8, we show how we

can retarget from a source skeleton with Nk = 22 to skeletons

Qt1 with Nt1 = 26 and, Qt2 with Nt2 = 25. Both Qt1 and Qt2

present extra end-effectors in the tail, which are animated by

the retargeting. Also, having different ”arms” configurations, it
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Fig. 10: Our MoMa approach is able to retarget from real world character, which motion can be modeled by a common SMPL mesh, even with challenging and

unseen motion such as backflip.

is interesting to notice how our approach can adapt to different

ranges of motion during the retargeting process.

Retargeting from real-world character. To demonstrate

the robustness and the generalization ability of MoMa, we show

some results from real-world complex motions taken from the

Skills from Video (SFV) data (Peng et al. (2018)) in Fig. 10.

This unlock the possibility of transferring to simulated charac-

ters virtually any human motion video processed by the com-

mon SMPL mesh (Kocabas et al. (2020)). Moreover, this

demonstrates the ability of MoMa to generalise at test time

to unseen skeletons that can be closely represented by one of

the skeletons in the training set (e.g., similar body proportions

and number of joints) or by a combination of multiple skele-

tons from the training set (e.g., maintaining the same number

of joints and matching body proportions as a combination of

multiple skeletons). Therefore, if the training set is sufficiently

diverse, we can generalize to nearly all isomorphic and home-

omorphic skeletons, but not to all possible non-homeomorphic

ones.

4.3. Ablation studies

We conduct the ablation studies using the isomorphic skele-

tons setup.

Skeleton-aware module. In Tab. 3, we show the ablation

studies for our skeleton aware module. Since it focuses only on

the skeleton retargeting, we report the MSE values only. Each

column reports a different type of experiment. We first evaluate

the effect of the number of masked joints M. M plays a cru-

cial role in the learning phase: in fact, if M is low it means that

the network does not have many samples in the ground truth

to learn from and to reconstruct the NC − Nk joints. On the

other hand, if M is large, it leads the network to reconstruct too

many missing tokens and struggles to learn the spatio-temporal

relationships between joints, worsening the results. Next, we

evaluate the masking strategy, with 0 masking providing a more

consistent starting point of the process and leading to better re-

sults. Finally, we ablate the spatial and temporal embeddings.

Used individually, each models the relationships only through

either time or space, penalizing the other dimension. Without

both embeddings, the network is neither penalized nor helped

to learn the spatial and temporal relationships. We obtain the

best results by combining both, meaning that our embedding is

able to model the relationships across both space and time.

Shape-aware module. In Fig. 9, we report how our method

performs by varying the λ parameter in the optimizer. Since in

the ideal case, one would like to achieve 0 in both MSE and FIE,

the closest a method is to the origin, the better. The parameter λ

allows to choose the preferred configuration, balancing between

collision avoidance and preserving the original skeletal motion.

Regardless of the value of λ, our method always performs better

than the state-of-the-art solutions.

Computational cost of the optimization step. In the Table
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Time of execution

(seconds)
Avg. number of

collisions per frame

Length of the

animation (frames)
SGD L-BFGS

144.2 73.1 522 56

345.3 180.39 450 144

Table 5: Computational cost of the optimization step.

5, we present the performance comparison of different optimiz-

ers, namely SGD and L-BFG,S for two Big Vegas animations of

different lengths. The mesh’s joint and face numbers have min-

imal impact on performance, as computation load is primarily

determined by the collisions to be resolved per frame.

5. Conclusions

In this work we presented MoMa, a novel approach for

skeleton-aware and shape-aware skinned motion retargeting.

To our knowledge, MoMa is the first method that enables fully

automatic motion retargeting between isomorphic, homeomor-

phic and non-homeomorphic character topologies. We obtain

state-of-the-art results on the Mixamo dataset and a visually

convincing motion retargeting between the different skeletal

topologies.
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Supplementary Material

6. Datasets splits used for Animations and Characters

In this section, we provide the full list of characters and an-

imations used in training and testing for the Mixamo dataset.

The list of animations is presented in a text file, with details on

the training and testing characters provided below.

6.1. Training

The characters used for training are the following:

• Isomorphic Characters: Aj, BigVegas, Goblin, Kaya,

Mousey, Warrok, PeasantMan.

• Homemorphic Characters: Aj, Malcolm m, BigVe-

gas, Kaya, SportyGranny, Remy m, Maria m, Knight m,

Liam m, Parasite, Michelle m, LolaB m, Pumpkin-

hulk m, Ortiz m, Paladin m, James m, Joe m, Olivia m,

Yaku m, Timmy m, Racer m, Abe m.

• Extramorphic Characters: Mewtwo, Penguin, Aj.

With m we indicate the characters with 25 joints.

6.2. Testing

The characters used for testing are the following:

• Isomorphic Characters: Ortiz, SportyGranny, Aj,

BigVegas, Goblin, Kaya, Mousey, Warrok, PeasantMan,

XBot, Man, CastleGuard.

• Homemorphic Characters:Aj, BigVegas, Goblin m,

Kaya, Mousey m, Mremireh m, SportyGranny, Vam-

pire m, Mutant.

• Extramorphic Characters: Mewtwo, Penguin, Xbot.

With m we indicate the characters with 25 joints.

7. Qualitative Ablation of lambda values

Our shape optimizer efficiently resolves collisions while pre-

serving the character’s original pose semantics. Figure 11 il-

lustrates the impact of varying the lambda parameter during
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Fig. 11: Qualitative Ablation of λ values. Higher λ values correspond to a lower number of collisions but higher deviation from the original pose.

the optimization results. Notably, higher lambda values yield

reduced collisions at the expense of increased deviation from

the original pose. Our experiments show that setting λ = 0.7

leads to the best trade-off between collision resolution and pose

fidelity in terms of both FIE and SCE. However, since the re-

targeting style largely depends on the animators’ artistic pref-

erences, our method allows the user to tailor the λ parameter

based on the specific characteristics of the motion sequence and

the character being retargeted. This additional degree of flex-

ibility aligns with the creative nuances inherent in the artistic

dimension of motion retargeting.

8. Linear Blend Skinning (LBS)

The Linear Blend Skinning (LBS) (Kavan (2014)) is defined

as:

v′ =
Nt∑

n=1

ωnT ( jn)v (5)

where ωn are the weights that define the influence of joint jn

on vertex v, and T ( jn) are a set of matrices that define the spatial

transformations to align the T-pose of joint jn with its current

(animated) pose. Please refer to Kavan (2014) for further math-

ematical details.


