
BUILD-A-VOLCAP : AUTOMATED SYNTHETIC VALIDATION OF REAL-WORLD
VOLUMETRIC CAPTURE QUALITY

Antonella Rech1, Giulia Martinelli1,2, Nicola Garau1,2, Nicola Conci1,2, Francesco De Natale1,2

1University of Trento, Via Sommarive 14, 38123 Trento TN, Italy
2CNIT – Consorzio Nazionale Interuniversitario per le Telecomunicazioni, Italy

Fig. 1: We present Build-A-Volcap, an automated pipeline for validating real-world Volumetric Capture (VC) setups using a
synthetic Digital Twin. Left to right: scenes from a real world volumetric capture are captured and rendered to images. The
original intrinsic and extrinsic parameters are extracted and transformed to build a Digital Twin of the volumetric capture.
Images from the synthetic VC are then re-rendered and compared against the real ones. Exploiting the obtained measurements,
we optimize the cameras positions and validate them once again, until a desired quality in the reconstruction is reached. Finally,
after the synthetic VC converges to a desired configuration, the real VC can be adjusted accordingly.

ABSTRACT

Volumetric capture techniques have significantly advanced in
recent years, enabling detailed 3D reconstructions of dynamic
real-world scenes. However, predicting their performance
prior to real-world deployment remains challenging, often
leading to costly experimental setups and uncertain outcomes.
In this paper, we present Build-A-Volcap, an automated syn-
thetic validation environment designed to predict the quality
of real-world volumetric capture systems. Our solution con-
structs comprehensive synthetic datasets and environments
that faithfully simulate practical capture conditions. This
enables rigorous testing and benchmarking of volumetric
methods such as photogrammetry, NeRF, Gaussian Splat-
ting and Radiant Foam without the need for physical setups.
Through extensive experiments, we demonstrate how Build-
A-Volcap effectively identifies methodological strengths and
limitations, significantly reducing the synthetic-to-real gap.
Our pipeline enables researchers and companies to optimize
and validate their volumetric capture setups virtually, ensur-
ing robust performance upon real-world deployment. More

information and code release on our project page: https:
//mmlab-cv.github.io/Build-A-Volcap/.

Index Terms— Volumetric Capture, Photogrammetry,
Volume Rendering, Computer Vision, Computer Graphics

1. INTRODUCTION

In recent years, volumetric capture (VC) technologies have
seen a remarkable progress, enabling high-resolution re-
construction of static and dynamic scenes across various
domains, such as virtual and mixed reality (VR, MR), virtual
production, cultural heritage and many more. Traditionally,
photogrammetry has been used to reconstruct point clouds
and meshes from a set of object-centric pictures. Novel
methods, such as Neural Radiance Fields (NeRF), Gaussian
Splatting, and Radiant Foam have emerged as an alternative
for capturing and rendering complex 3D environments, with
some additions such as the inclusion of view-dependent ef-
fects, such as transparency and reflections. Despite these
advancements, accurately predicting and evaluating the per-



formance of volumetric capture setups before real-world
implementation remains a significant challenge. Experimen-
tal setups for volumetric capture are often resource-intensive,
costly, and susceptible to uncertainties arising from environ-
mental conditions, hardware limitations, and methodological
constraints. Even in real-world conditions, changing the
camera configuration for a volumetric capture system is time
consuming due to the need for re-calibration, capturing and
testing.

To address these challenges, we introduce Build-A-
Volcap, a novel automated synthetic validation framework
that provides a robust simulation environment designed
specifically to emulate realistic volumetric capture scenarios.
Our proposed solution can be used to validate different vol-
umetric capture configurations prior to building the physical
setup, using multiple different reconstruction methods. By
bridging the synthetic-to-real gap, Build-A-Volcap enables
detailed analysis and benchmarking of method performance,
helping identify strengths and limitations early in the devel-
opment process.

Through extensive experimental setups and ablation stud-
ies, we show that Build-A-Volcap can be a highly valuable re-
source for research institutions and companies willing to build
a volumetric capture studio, especially in space-constrained
scenarios or with a limited budget. Furthermore, we show
some results on a digital twin of a real VC setup, proving that
Build-A-Volcap can be used to precisely replicate real, high
fidelity setups.

2. RELATED WORK

2.1. Volumetric Capture Setups

Recent advances in VC technology have enabled detailed
3D reconstructions through advanced multi-camera setups,
including mono, stereo, depth and ToF cameras. Most of the
VC setups use large arrays of synchronized RGB cameras
and distributed GPU processing to achieve a high-fidelity
capture [1]. Other systems, such as the Panoptic Studio [2]
are based on a combination of low and high resolution RGB
images as well as depth data. Most of the VC setups require
entire rooms or large areas in general; only some commer-
cially available solutions offer a professional high-resolution
setup that can fit in a limited space. In recent years, monoc-
ular volumetric performance capture methods [3] using deep
learning, structure from motion (SfM), or a combination of
both have also emerged; however, they suffer from limitations
and are not ideal for capturing volumetric videos, but rather
static scenes. [4] provides a comprehensive review of VC
setups, highlighting different system architectures, as well as
the challenges in camera calibration, frame synchronization
and data management.

2.2. Volumetric Capture Methods

Traditional photogrammetry and multi-view stereo (MVS)
techniques remain fundamental baselines in volumetric re-
construction, particularly represented by established frame-
works like COLMAP [5, 6] and newer commercially available
solutions, such as Epic Games’ Reality Capture1. Neural Ra-
diance Fields (NeRF) [7] have substantially impacted the field
by representing scenes with neural networks trained to model
continuous volumetric density and color fields. Early NeRF
implementations faced computational constraints, which
have been partially solved from subsequent methods such
as Instant-NGP [8] and Mip-NeRF 360 [9], which signif-
icantly accelerated rendering and improved scalability for
larger, real-world environments. Further improvements in
real-time rendering were achieved through Gaussian Splat-
ting [10], which employs optimized Gaussian primitives for
efficient rasterization-based rendering. Radiant Foam [11]
exploits a decades-old volumetric mesh ray tracing algorithm
to introduce hybrid explicit-implicit representations through
differentiable volumetric meshes, effectively combining the
advantages of traditional geometry and neural rendering.

3. METHOD

For all the real-world experiments, we collect data using a
custom version of a Mantis Vision VC setup2, with 32 units,
each containing a stereo cameras of resolution 2456x2054, an
infrared camera and projector, as well as an Intel NUC mini
PC. For more information on the VC setup, please refer to
[12]. After building the digital twin of this setup, as well as
two comparable configurations (Fig. 3), we choose Reality
Capture as a photogrammetry baseline, together with NeRF,
Gaussian Splatting and Radiant Foam, due to their popularity
in the research community.

3.1. Real-to-synth

We start by processing the intrinsic and extrinsic parameters
of the Mantis volumetric capture system, which transforms
are relative to the first infrared (IR) camera unit. Specifically,
these parameters are represented as camera matrices, defined
as:

P = K[R|t], (1)

where K is the intrinsic matrix comprising focal lengths and
principal point coordinates, and [R|t] represents the extrinsic
(rotation and translation) parameters of the camera. These pa-
rameters are first transformed from the local coordinate sys-
tem to a unified global coordinate frame, enabling consistent
comparisons and conversions among different reference sys-
tems (Blender, Reality Capture, Nerfstudio). To accurately

1https://www.capturingreality.com/
2https://mantis-vision.com/3d-studio-3iosk/



align captured images within a unified global coordinate sys-
tem, we apply the transformations described in Algorithm 1.
Each stereo pair includes a primary and a secondary RGB
camera. The primary camera pose is directly transformed to
the global frame. For the secondary camera, which is defined
relative to the infrared (IR) reference, we first compute the
global IR-to-world transformation TIR

world. Its inverse, Tworld
IR ,

is used to map poses into the global frame. A 180◦ rota-
tion around the z-axis (Rz) corrects orientation, and trans-
lation values are scaled from millimeters to meters. The final
transformation Tworld

RGB aligns each camera for consistent real-
to-synthetic comparison.

Algorithm 1 Camera Transformation

1: Input camera parameters: K, TRGB
2: Output: Tworld

RGB
3: if secondary camera then
4: Tworld

RGB ← Rz · inv(TRGB) ·Tworld
IR · inv(Tworld

IR )
5: else
6: Tworld

RGB ← Rz · inv(TRGB) · inv(Tworld
IR )

7: end if
8: Tworld

RGB [1 : 3, 4]← Tworld
RGB [1 : 3, 4]/1000

9: return Tworld
RGB

The resulting transformation Tworld
RGB provides a consistent

coordinate system suitable for accurate comparisons and eval-
uations within synthetic reconstruction environments.

Now that the transformation is computed, the scene can
be rendered within the chosen toolkit. The resulting recon-
struction can then be compared against the original captured
images to quantitatively and qualitatively assess the fidelity
and accuracy of the synthetic pipeline.

3.2. Synth-to-real

After creating the digital twin of the physical VC setup, our
goal is to optimize the camera configuration without manu-
ally adjusting the cameras in the real world. As illustrated
in Figure 1, this is achieved by virtually reconfiguring the
camera positions within the synthetic Build-A-Volcap envi-
ronment, re-rendering the same target scene, and comparing
the outputs against the original images. This iterative proce-
dure enables validation and refinement of the configuration,
eventually leading to improved capture quality, as discussed
in Section 4.

To ensure robustness, we validate our pipeline using both
synthetic and real subjects. These subjects exhibit a wide
range of characteristics, including varying textures, levels of
detail, and sizes. This diversity allows us to assess the per-
formance of Build-A-Volcap under different conditions, en-
suring that the final camera setup achieves the desired quality
and consistency.

Upon completing the optimization phase, the resulting
configuration can be directly transferred to the physical setup.

PSNR↑ SSIM↑ LPIPS↓
Chair 28.89 0.920 0.129
Fruits 27.7 0.910 0.177

Mixamo 29.74 0.970 0.043
Subject1 31.51 0.968 0.061
Subject2 29.49 0.966 0.057

Table 1: NeRF quantitative results for the volumetric recon-
struction of 5 subjects in the Mantis VC setup.

PSNR↑ SSIM↑ LPIPS↓
Chair 30.31 0.911 0.098
Fruits 25.54 0.891 0.167

Mixamo 29.25 0.973 0.041
Subject1 30.25 0.958 0.067
Subject2 29.78 0.965 0.057

Table 2: Gaussian Splatting quantitative results for the volu-
metric reconstruction of 5 subjects in the Mantis VC setup.

Cameras in the real-world studio can then be re-arranged
according to the optimized layout without requiring a trial-
and-error process. In this sense, Build-A-Volcap acts as a
powerful simulation and planning environment that facilitates
the design and adjustment of volumetric capture systems
before physically implementing them.

4. RESULTS AND ABLATION STUDIES

The main goal of this paper is to provide a solution to repli-
cate, validate and improve existing volumetric capture sys-
tems. To do so, we first run state-of-the-art volumetric re-
construction methods on multiple subjects and extract some
relevant metrics. Subsequently, we provide ablations on both
the physical setup of the VC and the reconstruction pipelines.

For the baseline results, we run several volume recon-
struction pipeline on five different objects, both real and syn-
thetic: a chair, a basket full of fruit, a synthetic character from
the Mixamo dataset 3 and two real characters captured using

3https://www.mixamo.com/

PSNR↑ SSIM↑ LPIPS↓
Chair 36.33 0.949 0.078
Fruits 30.27 0.930 0.116

Mixamo 36.89 0.987 0.024
Subject1 39.20 0.981 0.040
Subject2 38.03 0.980 0.039

Table 3: Radiant Foam quantitative results for the volumetric
reconstruction of 5 subjects in the Mantis VC setup.



Fig. 2: Qualitative results for the five chosen characters using the selected volumetric reconstruction methods on the Mantis
configuration. All the methods perform very similarly, although they produce different kinds of barely perceptible artifacts.
The last two columns are being compared to real-world scenes captured using a physical VC setup by Mantis Vision.

the Mantis VC setup. As for the choice of the reconstruc-
tion pipelines, we choose Reality Capture as the only pho-
togrammetry method, while for the ”neural-like” methods, we
choose NeRF [7], Gaussian Splatting [10] and Radiant Foam
[11]. For the first two, we rely on the Nerfstudio implementa-
tion [13] for convenience, while for Radiant Foam we use the
original implementation (v1).

We show the results in terms of PSNR, SSIM and LPIPS
in Tables 1,2,3. In all our experiments we showcase consis-
tent results over all the subjects, with little variation between
the three methods, with Radiant Foam achieving a slightly
better overall result compared to NeRF and Gaussian Splat-
ting. In Figure 2 we show some qualitative results on all the
reconstructed objects from the same viewpoint. All the cho-
sen methods achieve comparable results in terms of perceived
quality.

4.1. Ablation Studies

We conducted extensive ablation studies for our pipeline, that
can be seen in Tables 4 and 5. Figure 3 shows the three VC
setups that we considered for our experiment. Mantis is the
exact digital twin of a customized Mantis Vision VC system.
Cylinder refers to a simple setup composed of two rings of 16
cameras each, and a similar reasoning is applied to the Cube
setup.

Fig. 3: Different configurations for the VC setup: Mantis (ex-
act digital twin), Cylinder (prioritize density) and Cube (pri-
oritizing uniformity).



PSNR↑ SSIM↑ LPIPS↓
NeRF GS RF NeRF GS RF NeRF GS RF

Mantis 29.49 29.78 38.03 0.970 0.960 0.980 0.057 0.057 0.039
Cylinder 32.83 32.89 39.97 0.970 0.970 0.980 0.045 0.042 0.024

Cube 28.36 28.37 41.25 0.960 0.960 0.988 0.065 0.065 0.022

Table 4: Ablation studies for the different configurations of the cameras in the synthetic VC. In all the configurations, Radiant
Foam (RF) consistently outperforms the other two methods, while the Cube configuration is the best overall capturing setup of
the three, most likely because of its uniformily distributed views.

PSNR µ ↑ PSNR σ↓ SSIM µ ↑ SSIM σ↓ LPIPS µ ↓ LPIPS σ↓
Reality Capture 29.36 1.253 0.963 0.006 0.043 0.010

Nerfacto 31.51 0.924 0.968 0.005 0.061 0.019
Nerfacto-big 28.23 0.833 0.940 0.048 0.070 0.069

Nerfacto-huge 27.34 1.191 0.933 0.014 0.078 0.019
Splatfacto 30.26 1.961 0.958 0.013 0.067 0.028

Splatfacto-big 40.48 2.084 0.985 0.007 0.016 0.011
Radiant Foam 39.20 2.367 0.981 0.009 0.039 0.022

Table 5: Ablation studies for the chosen reconstruction pipelines. Please refer to Nerfstudio [13] for exact model sizes and
parameters. Splatfacto-big appears to be the best model for this particular configuration (Mantis), closely followed by Radiant
Foam.

In this ablation study, we keep the camera parameters
fixed in all the configurations. Specifically, we consistently
use 60 training cameras, and 12 test cameras for each config-
uration, both with a fixed 35mm focal length. In particular,
we conducted a thorough analysis of each algorithm’s behav-
ior with respect to camera pose and spatial proximity within
the scene. For instance, we use the Mantis configuration to
represent a sparse view setup, the Cylinder configuration as
a dense representation with multiple closely spaced views,
and the Cube setup to prioritize views uniformity. The results
associated to this study can be seen in Table 4.

In addition, we perform further ablation studies on the
type and size of volumetric reconstruction pipeline, as seen
in Table 5. It is worth noticing that the larger models do not
always lead to better performances.

5. CONCLUSIONS

In this work, we presented Build-A-Volcap, an automated
synthetic validation framework designed to predict and opti-
mize real-world volumetric capture quality prior to physical
deployment. By simulating a realistic volumetric capture
setup and generating high-resolution multi-view datasets, our
method allows detailed analysis of various volumetric re-
construction techniques, including photogrammetry, NeRF,
Gaussian Splatting, and Radiant Foam. Extensive quantitative
experiments and ablation studies demonstrated that Build-A-
Volcap effectively identifies methodological strengths and

limitations, significantly bridging the synthetic-to-real gap.
Additionally, our synthetic simulations can precisely repli-
cate complex real-world capture setups by creating a proper
digital twin of the physical VC. Build-A-Volcap thus provides
a valuable tool for researchers and companies to efficiently
test and optimize their volumetric capture solutions, reducing
both costs and uncertainty associated with the deployment
of traditional setup. Furthermore, the proposed framework is
highly customizable, allowing the developer to arbitrarily ma-
nipulate the cameras parameters and design novel capturing
setups.
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