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ABSTRACT

Deep neural networks achieve outstanding results in a large variety of tasks, often outperforming
human experts. However, a known limitation of current neural architectures is the poor accessi-
bility in understanding and interpreting the network’s response to a given input. This is directly
related to the huge number of variables and the associated non-linearities of neural models, which
are often used as black boxes. This lack of transparency, particularly in crucial areas like au-
tonomous driving, security, and healthcare, can trigger skepticism and limit trust, despite the net-
works’ high performance. In this work, we want to advance the interpretability in neural networks.
We present Agglomerator++, a framework capable of providing a representation of part-whole hi-
erarchies from visual cues and organizing the input distribution to match the conceptual-semantic
hierarchical structure between classes. We evaluate our method on common datasets, such as Small-
NORB, MNIST, FashionMNIST, CIFAR-10, and CIFAR-100, showing that our solution delivers a
more interpretable model compared to other state-of-the-art approaches. Our code is available at
https://mmlab-cv.github.io/Agglomeratorplusplus/.

© 2024 Elsevier Ltd. All rights reserved.

1. Introduction

While deep neural networks consistently outperform humans

across fields like computer vision (He et al. (2016)), natural

language processing (Vaswani et al. (2017)), and data analy-

sis (Sezer et al. (2020)), the achieved high performance often

comes at the cost of increased complexity. It is a common prac-

tice to train and evaluate neural networks with billions of pa-

rameters, primarily guided by experience and heuristics. Con-

sequently, understanding how an individual trainable parameter

in the network setup directly affects the desired output from
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a given input becomes nearly impossible, as shown by Mallat

(2016).

Interpretability, defined as the capacity to provide under-

standable explanations to humans (Linardatos et al. (2021);

Doshi-Velez and Kim (2017)), is crucial in many areas, as

shown by Grigorescu et al. (2020) in autonomous driving and

by Sezer et al. (2020) in finance, although it is generally chal-

lenging to understand why a specific decision was made. In

contrast, humans excel at understanding objects, their parts, and

their interrelationships. We can categorize and recognize an ob-

ject from its parts and infer its concept from its visual features,

as introduced by Biederman (1987). This hierarchical represen-

tation is often missing in deep learning networks.

Various techniques have been introduced in the image
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classification field, such as transformers (Vaswani et al.

(2017); Dosovitskiy et al. (2020)), neural fields (Mildenhall

et al. (2020)), contrastive learning representation (Chen et al.

(2020)), distillation (Hinton et al. (2015)), and capsules (Sabour

et al. (2017)). These methods have improved interpretability to

a certain extent. However, they often lack emphasis on data re-

lationships or model-learned relationships, such as part-whole

hierarchies. Inspired by the GLOM framework presented by

Hinton (2021), our Agglomerator presented by Garau et al.

(2022) aims to address these shortcomings. It integrates multi-

ple methods, such as CNNs (Li et al. (2021a)), transformers,

and positional encoding (Vaswani et al. (2017); Dosovitskiy

et al. (2020)), contrastive learning representation (Chen et al.

(2020)), distillation (Hinton et al. (2015)), and capsules (Sabour

et al. (2017)).

Agglomerator++ is an evolution of our previous contribu-

tion, Agglomerator, which had proven effective for represent-

ing part-whole hierarchies while dealing with the image clas-

sification task. Agglomerator++ shares a similar structure but

enhances the results while reducing the model size. Using a

technique similar to that presented by Mildenhall et al. (2020),

we introduced the positional encoding and we adopt a train-

ing procedure with masked patches as performed by Xie et al.

(2022); He et al. (2022). The sample latent representation af-

ter the masked pre-raining allows the architecture to achieve

better performances in the classification stage than the previ-

ously adopted contrastive pre-training, at a smaller computa-

tional cost. We conduct an extensive evaluation of Agglom-

erator++, focusing on the hyperparameters that are peculiar to

our architecture and cannot be found in other neural networks,

such as the number of levels and column structure (details in

the coming paragraphs). Experimental results show that our

model can compete with much larger models on big datasets

while retaining a small number of parameters and outperform-

ing capsule networks on smaller ones.

Our contribution is summarised as follows:

• we introduce a novel model, called Agglomerator++,

mimicking the functioning of the cortical columns in the

human brain (Hawkins (2021));

• we show how our architecture provides interpretability of

relationships contained in data, namely the hierarchical

organization of the feature space closely resembling hu-

man lexical similarities (Miller (1995));

• we provide results outperforming or on par with current

methods on common datasets, such as SmallNORB (Le-

Cun et al. (2004)), MNIST (LeCun et al. (1998)), Fashion-

MNIST (Xiao et al. (2017)), CIFAR-10 and CIFAR-100

(Krizhevsky et al. (2009));

• we show how the input masking during the pre-training for

self-supervised reconstruction leads to a better, more effi-

cient neural representation than the previously deployed

contrastive pre-training (Garau et al. (2022)).

2. Related work

In the domain of computer vision, a wide range of architec-

tures exists, which have been employed for different tasks, such

as classification, segmentation, and tracking. The breakthrough

in the application of deep learning techniques, was achieved

by Convolutional Neural Networks (CNNs) (He et al. (2016);

Simonyan and Zisserman (2014)), which have since been sur-

passed by Transformers (Dosovitskiy et al. (2020); Khan et al.

(2021)). Multi-Layer Perceptrons (MLPs) have resurged in re-

cent years thanks to the availability of more powerful comput-

ers, since their straightforward architecture is offset by the huge

model size. Capsules networks (Sabour et al. (2017); Hinton

et al. (2018); Ribeiro et al. (2020)) and graph neural networks

(GNNs) have emerged as the best architectures able to make the

part-whole hierarchies in data emerge, with capsules getting the

better edge in terms of interpretability of the response to a given

input. In the following paragraphs, an extended overview of the

techniques mentioned above is presented.

Convolutional Neural Networks (CNNs) (He et al. (2016);

Simonyan and Zisserman (2014)) gained prominence in com-

puter vision tasks, particularly by outperforming existing litera-

ture in image classification. However, their increased complex-
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ity and size have raised issues concerning their interpretability.

Transformers, using self-attention and patch-based approaches,

have surpassed CNNs, although they require substantial pre-

training on large datasets for optimal performance, as discussed

in Dosovitskiy et al. (2020); Khan et al. (2021).

Transformers (Dosovitskiy et al. (2020); Khan et al. (2021);

Vaswani et al. (2017)) have surpassed CNNs in performance

due to their self-attention and patch-based image analysis ca-

pabilities. Despite their more resource-intensive training, they

effectively combine information from various image locations.

They utilize positional encoding (Vaswani et al. (2017)) to

maintain positional information, but typically require exten-

sive pre-training on large datasets for optimal performance.

Recently, advancements were made by learning to reconstruct

samples from their partially masked versions (Xie et al. (2022)).

The research of the past decade has shown an interest in mak-

ing part-whole hierarchies in data emerge. Capsule Networks

(see Sabour et al. (2017); Hinton et al. (2018); Ribeiro et al.

(2020)) and GNNs (Wu et al. (2020)) have shown promising

results in this direction. In Capsule networks, the routing al-

gorithm determines which capsules are activated to describe an

object in the image, with lower-level capsules describing the

parts, and higher-level capsules describing wholes. While effec-

tively routing information from different locations in the image,

activated capsules cannot describe every single possible object

in the image, thus limiting their effectiveness on more complex

datasets (e.g. ImageNet, CIFAR-100), while achieving state-

of-the-art results on simpler ones (e.g. MNIST). Moreover cap-

sules have been employed to model the time sequencing be-

tween images De Sousa Ribeiro et al. (2024); Ribeiro et al.

(2022); Li et al. (2021b). Specifically, in De Sousa Ribeiro

et al. (2024) they explore the adaptation of capsule networks

to the video domain, addressing challenges in capturing motion

information and scaling routing operations.

In recent times, there has been a shift towards biologi-

cally constrained AI, aiming to create deep learning networks

that replicate the human brain’s structure and functionality

(Hawkins (2021)). The GLOM framework, which is based

on inter-connected columns, each composed of auto-encoders

sharing weights, has emerged in this context (Hinton (2021)).

While initially GLOM was conceptualised as more of an intu-

ition, it has now been developed into a fully functional system,

named Agglomerator, specifically tailored for image classifica-

tion tasks as presented by Garau et al. (2022). Other works Rad-

wan and Shehata (2024, 2023) have demonstrated the efficacy

of the Agglomerator pipeline, particularly with the combination

of various pre-trained backbones to aid fine-tuning on larger

datasets, achieving impressive results. In this work, we build

upon the Agglomerator baseline by enhancing its performance,

reducing the model size, and simplifying the pre-training pro-

cess.

3. Method

The framework we propose aims to replicate a column-like

pattern, similar to hyper-columns typical of the human visual

cortex (Hawkins (2021)). The proposed network, called Ag-

glomerator++, approaches the classification task in a patch-

based fashion, constructing the so-called hypercolumns on top

of each patch. Each hypercolumn consists of several layers

which, from bottom to top, progressively agree on the same

representation according to a part-whole paradigm, to the defi-

nition of the image content.

Compared to the previous solution proposed in Agglomera-

tor by Garau et al. (2022), the method also benefits from in-

corporating unsupervised pre-training (Hamilton et al. (2022)),

setting up the network as an autoencoder to reconstruct the

masked input image as in Xie et al. (2022), which leads to a

better neural representation. This procedure, combined with a

Transformer-like self-attention (Vaswani et al. (2017)) mecha-

nism on each layer of the columns, aims at reaching consensus

between columns. Routing information with layer-based atten-

tion and stacked autoencoders allows GLOM to learn different

levels of abstraction of the input at different locations and levels

in the columns, creating a part-whole structure with a richer

representation compared to capsule networks.
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3.1. Preliminaries

Here, we introduce the mathematical notation needed to ex-

plain the details of the main building blocks of the architecture.

Each input image is transformed into a feature map divided

into N = h × w patches. The n-th patch, with n ∈ {1, . . . ,N},

located at coordinates (h,w) is fed to the corresponding column

C(h,w).

As shown in Fig. 1, each column C(h,w) consists of K em-

bedding levels {l(h,w),k
t | k = 0, . . . ,K} connected by a stack of

auto-encoders at location (h,w) and time t ∈ {0, 1, . . . ,T }, as

suggested in Hinton (2021). The (h,w) notation is omitted in

subsequent instances of lkt for better readability. Each level lkt of

the column is a vector representation of size d, which encodes

the patch information at position k at time t; lk−1
t and lkt repre-

sent consecutive embedding levels; lk−1
t represents a part of the

whole lkt .

We denote the set of all levels Lk
t as the layer containing all

lkt in all columns sharing the same k. Being K the last layer of

our architecture at the last time step T , it is represented as LK
T .

3.1.1. Patches embedding

At the embedding stage, as in Li et al. (2021a), we apply a

convolutional tokenizer to extract the feature map of each im-

age of size H × W pixels, to provide a richer representation

compared to the original image. Following the implementation

in Li et al. (2021a), the obtained feature map is of size h×w×d

where h = H/Hp and w = W/Wp, with Hp and Wp being the

dimensions in pixels of each patch. We then embed each d-

dimensional embedding vector into the bottom levels l0t ∈ L0
t at

the corresponding coordinates (h,w) of the corresponding col-

umn C(h,w). Feeding each patch to a spatially located column

C(h,w) resembles the positional encoding of neural fields (see

Mildenhall et al. (2020)), where each d-sized embedding lkt rep-

resents both the sample and its relative observation viewpoint.

3.1.2. Hypercolumns

Every auto-encoder bridges consecutive levels in time and

space within a column C(h,w). Based on an MLP, these auto-

encoders facilitate model reduction (Hinton et al. (2015)) and

Fig. 1: Architecture of our Agglomerator++ model (center) with information

routing (left) and detailed structure of building elements (right). Each cube rep-

resents a level lkt . Top: (a) legend for the arrows in the figure, representing the

top-down network NT D(lk+1
t−1 ) and the positional embedding p(h,w), the bottom-

up network NBU (lk−1
t−1 ), attention mechanism A(Lk

t−1) and time step t. Left: (b)

Contribution to the value of level lkt given by lkt−1, NT D(lk+1
t−1 ) and NBU (lk−1

t−1 ).

(c) The attention mechanism A(Lk
t−1) facilitates information sharing between

lkt−1 ∈ Lk
t−1. The positional embedding p(h,w) is different for each column

C(h,w). All levels belonging to the same hyper-column C(h,w) share the po-

sitional embedding p(h,w). Center: bottom to top, the architecture consists

of the tokenizer module, followed by the columns C(h,w), with each level lkt

connected to the neighbors with NT D(lk+1
t−1 ) and NBU (lk−1

t−1 ). Right: (d) Structure

of the top-down network NT D(lk+1
t−1 ) and the bottom-up network NBU (lk−1

t−1 ).
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quicker training. The auto-encoder computes the top-down con-

tribution of level lk+1
t−1 to the value of the lower level at the next

time step lkt using a NT D(lk+1
t−1 ) top-down decoder. Likewise, it

calculates the bottom-up contribution of level lk−1
t−1 to the value

of the level above at the next time step lkt using a NBU(lk−1
t−1 )

bottom-up encoder.

3.1.3. Routing

The key element of our architecture is how the information

is routed to obtain a representation of the input data where the

part-whole hierarchies emerge. To propagate batch B through

the network, to achieve deep image representations, we employ

the propagation phase, fostering consensus between neighbor

levels lkt ∈ Lk
t . This process yields similar values across the

last layer’s neighbor levels lK
t ∈ LK

t , each depicting the same

whole, while lower layers share values amongst smaller groups

signifying the same part. Vectors with similar values, or islands

of agreement, symbolize image representation consensus at a

given level (Hinton (2021)).

Attention weights. The attention A(Lk
t ) allows the informa-

tion to be routed between embeddings belonging to the same

layer. In our architecture we employ a simple version of the

attention, which is similar to a weighted average of the em-

bedding belonging to the same levels of the network (Xu et al.

(2015)). Each attention weight Ωn is computed as

Ωn =
eβλn·lkt∑
eβλn·a(λn)

(1)

where λn represents each possible level lkt belonging to the

same layer Lk
t , a(λn) is an indicator function, which indexes all

the neighbors levels of λn belonging to the same layer Lk
t and β

is a parameter that determines the sharpness of the attention.

3.2. Methodology

Hypercolums structure. Differently from Garau et al.

(2022), NT D(lk+1
t−1 ) and NBU(lk−1

t−1 ) share a similar structure,

as shown in Fig. 1(d). Both these networks use GELU

activation functions Hendrycks and Gimpel (2016). All

NT D(lk+1
t−1 ) | k = 0, . . . ,K networks share the same weights, as

do all NBU(lk+1
t−1 ) | k = 0, . . . ,K networks. This weight shar-

ing among top-down decoders and bottom-up encoders sig-

nificantly reduces the number of parameters and model size.

Additionally, it promotes the part-whole hierarchy since iden-

tical networks connect embeddings at successive levels with

similar hierarchical relationships (a part at level k − 1 to its

whole at level k), but varying representation abstractions (a

whole at level k is a part relative to level k + 1). Thus, the

same auto-encoder can capture part-whole relationships inde-

pendently from the level of abstraction.

Positional embedding. Similarly to Dosovitskiy et al.

(2020), we define a set of positional embeddings to retain po-

sitional information. The same d-dimensional positional em-

bedding p(h,w) is shared among all the levels lkt belonging to

the same column, one for each patch. As suggested in Hinton

(2021), this embedding is used to obtain a rich image represen-

tation. Similar to neural fields, the positional embedding vector

is added to the output of the top-down network and used by

the bottom-up networks to propagate the information to upper

levels, causing the emergence of islands of agreement between

neighbor patches a(λn) corresponding to neighbor object repre-

sentations. The top-down network, using both object represen-

tations a(λn) and positional encoding p(h,w), decodesthe whole

object representation into different parts. For instance, starting

from a uniform vector lk+1
t−1 representing a dog’s face (whole), the

addition of positional embedding allows the network to decode

this vector into diverse embeddings lkt , such as a mouth or ears

(parts). Through the integration of positional embeddings, our

network enables the emergence of islands of agreement without

without relying on contrastive learning.

Propagation phase. At each time step t ∈ {1, . . . ,T }, we

compute the values lkt as

lkt = avg(ωllkt−1, ωBU NBU(lk−1
t−1 ),

ωT D(NT D(lk+1
t−1 ) + p(h,w)), ωAA(Lk

t−1))
(2)

where avg() indicates the arithmetical average, and

ωl, ωBU , ωT D, ωA are trainable weights.1

1For layer LK
t , contribution NT D(lk+1

t−1 ) is not included, as LK+1
t does not

exist.
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Fig. 2: Pre-training to obtain a rich neural representation. During the pre-training phase, a masked input is given to the network. The reconstruction loss LRecon

depends on how well the masked patches of the input image are reconstructed. The loss is attached to level L1
t because the network presents more detailed features

at a lower level, while the representation becomes more abstract at higher levels, making them less suitable for reconstructing the input image. At the same time,

enforcing the minimization of the regularisation losses Ld on the last level LK
t encourages the network to display more definite islands of agreement at higher levels.

Fig. 3: Training for image classification. During the training phase, image samples are fed through the network to obtain their neural representation. The

information is routed for at least 2K iterations to ensure that it is propagated through the network from the bottom level upward thanks to the bottom-up networks

and back downward thanks to the top-down networks. The classification loss L2 is associated with the last level because the higher-level features are more suitable

for the classification task.
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Method Reference Backbone

Error % # of

params

(Millions)

Training

Arch.
S-Norb MNIST F-MNIST C-10 C-100

E-CapsNet Sabour et al. (2017) Caps 2.54 0.26 - - - 0.2 GPU

CapsNet Sabour et al. (2017) Caps 2.70 0.25 6.38 10.65 82.00 6.8 GPU

Matrix-CapsNet Hinton et al. (2018) Caps 1.40 0.44 6.14 11.92 - 0.3 GPU

Capsule VB Ribeiro et al. (2020) Caps 1.60 0.30 5.20 11.24 - 0.2 GPU

ResNet-101 He et al. (2016) Conv - 2.10 5.10 6.41* 27.76* 23.6 GPU

VGG Huang et al. (2016) Conv - 0.32 6.50 7.74* 28.05* 20.0 GPU

NesT-B Zhang et al. (2022) Transf - - - 2.80 17.44 97.2 GPU

CRATE-S Yu et al. (2023) Transf - - - 4.00 19.00 13.1 GPU

CRATE-B Yu et al. (2023) Transf - - - 3.20 17.30 22.8 GPU

CRATE-L Yu et al. (2023) Transf - - - 2.80 16.40 77.6 GPU

SparseSwin Pinasthika et al. (2024) Transf - - - 2.57 14.65 17.6 GPU

ViT-L/16 Dosovitskiy et al. (2020) Transf - - - 0.85* 6.75* 631.9 TPU

ConvMLP-L Li et al. (2021a) Conv/MLP - - - 1.40* 11.40* 42.7 TPU

MLP-Mixer-L/16 Tolstikhin et al. (2021) MLP - - - 1.66* - 207.2 TPU

Agglom Garau et al. (2022) Conv/MLP/Caps 0.01 0.30 7.43 11.15 40.97 72.0 GPU

Agglom++ (Ours) Conv/MLP/Caps 0.01 0.30 5.74 9.35 35.6 1.3 GPU

Table 1: Error percentages on the Top-1 accuracy results on datasets SmallNorb (S-Norb), MNIST, FashionMNIST (F-MNIST), CIFAR-10 (C-10), and CIFAR-100

(C-100). The ∗ notation indicates results obtained with networks pre-trained on ImageNet.

Configuration Error %

# of

levels

K

Levels

embedding

d

# of

params

(Millions)

I Agglomerator Garau et al. (2022) 11.15 2 128 72.0

II Agglomerator++ (Ours) 9.35 5 192 1.3

III Decrease K 12.50 3 192 0.8

IV Increase K 11.90 8 192 1.9

Table 2: Ablation study results of different Agglomerator configurations ob-

tained on CIFAR-10 with a varying number of levels K.

Configuration Error %

# of

levels

K

Levels

embedding

d

# of

params

(Millions)

I Agglomerator Garau et al. (2022) 11.15 2 128 72.0

II Agglomerator++ (Ours) 9.35 5 192 1.3

IV Decrease d 12.70 5 128 0.6

V Increase d 9.55 5 512 9.0

VI Without A(Lk
t ) 13.99 5 192 1.1

VII Without p(h,w) 13.03 5 192 1.3

VIII Without regularization L 9.57 5 192 1.3

IX Without conv tokenizer 16.91 5 192 3.4

Table 3: Ablation study results of different Agglomerator configurations ob-

tained on CIFAR-10 with a varying embedding size d and removing key com-

ponents.

Masking % Error %

20 9.39

50 9.35

80 9.51

Table 4: Ablation study results of different masking percentages with K = 5

and d = 192.

3.2.1. Training

The training procedure of our architecture is divided into

two steps: (i) a pre-training phase where we train Agglomera-

tor++ as an auto-encoder with a reconstruction loss for masked

patches of the image (Xie et al. (2022)) coupled with a con-

sensus regularization loss (Hinton (2021)) and (ii) a fine-tuning

phase for the image classification task using a Cross-Entropy

loss.

Pre-training to obtain a rich neural representation: As

shown in Fig. 2 and similarly to Xie et al. (2022), we pre-train

our network to reconstruct the masked pixels xM of image in-

put. Specifically, we set 50% of the total patches to random

values before applying the convolutional tokenizer. The final
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neural image representation is derived from iterative informa-

tion routing, with reconstruction loss LRecon attached to layer

Lt1. This detailed representation is a blend of low-level feature

encoding and high-level abstract aggregation (Hinton (2021)).

The reconstruction loss is defined as:

LRecon =
1

Ω(xM)
||yM − xM ||1 (3)

where x, y ∈ R3HpWp are the input and predicted RGB pixel

values, M denotes the set of masked pixels, Ω(.) is the number

of total pixels, and ||.||1 is the 1-norm.

As suggested by Hinton (2021), we use a consensus loss to

regularise the network and encourage the formation of islands

of agreement at the top level of the architecture. We define the

consensus vector Vk
t , the bottom-up loss vector VBU(LK

t ) and

the top-down loss vector VT D(LK−1
t ) as

Vk
t = lkt (1)⌢ lkt (N) (4)

VBU(LK
t ) = NBU(lK−1

t−1 (1))⌢ NBU(lK−1
t−1 (N)) (5)

VT D(LK−1
t ) = NT D(lK

t−1(1))⌢ NT D(lK
t−1(N)) (6)

where the . ⌢ . operator denotes the concatenation between

all the d-dimensional vectors belonging to the same layer, thus

obtaining a vector of size N × d.

Defining the cosine distance loss between two vectors x and

y as Ld(x, y) = 1 − cos(x, y) = xT y
∥x∥∥y∥ , the resulting loss to be

minimized at the pre-training stage is

L1 = LRecon +Ld(VBU(LK
t ),VK

t ) +Ld(VT D(LK−1
t ),VK−1

t ) (7)

The last two terms act as a regularizer to improve the coher-

ence of islands of agreement.

Fine tuning the architecture As shown in Fig. 3 Once the

network is pre-trained using the L1 loss, we detach the pre-

training losses from the architecture. To calculate the input

to the cross-entropy loss for the classification, we compute the

mean of all d-dimensional lK
t vectors like in the work by Doso-

vitskiy et al. (2020). The resulting d-dimensional vector is fed

through a layer normalization and a linear stage which reduces

the size to c, namely the number of classes to be predicted for

each dataset. Then we apply the standard cross-entropy func-

tion:

L2 = CE(y, ŷ) = −
1
c

c∑
i=1

yi log(ŷi) (8)

where y and ŷ are the label and the prediction of the sample

taken from the batch, respectively.

4. Experiments

We perform our experiments on the following datasets:

• SmallNorb (S-NORB) (LeCun et al. (2004)) is a dataset

for 3D object recognition from shape.

• MNIST (LeCun et al. (1998)) and FashionMNIST (Xiao

et al. (2017)).

• CIFAR-10 and CIFAR-100 (Krizhevsky et al. (2009)).

Our network is trained in an end-to-end fashion on a single

NVIDIA GeForce RTX 3090. All datasets are employed at na-

tive resolution, but SmallNorb, which is resized to 32×32 pixels

as defined by Ribeiro et al. (2020); Hinton et al. (2018). The to-

kenizer embedding creates n = H/4 ×W/4 patches represented

by n d-dimensional vectors, where H and W are the pixels di-

mension of the input image. Thus, the corresponding number

of columns is 8×8 for CIFAR-10, CIFAR-100, and SmallNorb,

and 7 × 7 for MNIST FashionMNIST. During the pre-training,

we set the following hyper-parameters: 1000 epochs, cyclic

learning rate (Smith (2017)) in the range [0, 1e−3], batch size

B = 512, levels embedding d = 192, number of levels K = 5,

number of iterations T = 2K = 10, and weight decay 5e−2.

4.1. Quantitative results

Quantitative results from Tab. 1 indicate our Agglomer-

ator++ performs well on both simple (SmallNorb, MNIST,

Fashion MNIST) and complex datasets (CIFAR10, CIFAR100)

without architecture modification or pre-training. It matches

capsule-based models on simple datasets (Hinton et al. (2018);
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Fig. 4: Illustration of the evolving islands of agreement at varying K levels for MNIST and CIFAR-10 datasets samples. Displaying agreement vectors for each

patch at each k level post 300 epochs of pre-training. Level k = 1 functions akin to a feature extractor with minimal neighbor agreement. Lastly, at level k = 5, two

islands surface representing the object and the background.

Sabour et al. (2017); Ribeiro et al. (2020)), outperforms them

on complex datasets, yet requires fewer parameters and train-

ing time than transformer-based (Dosovitskiy et al. (2020); Yu

et al. (2023); Pinasthika et al. (2024); Zhang et al. (2022)) and

MLP-based methods (Li et al. (2021a); Tolstikhin et al. (2021)).

While convolutional models (He et al. (2016); Huang et al.

(2016)) generalize well, they lack model interpretability. Ag-

glomerator++ further enhances efficiency by sharing weights

among networks and reducing extra layer requirements, thereby

achieving comparable parameter count to capsule networks and

superior performance on complex datasets. Agglomerator (Ga-

rau et al. (2022)) has fewer parameters than most transformer-

based and MLP-based methods, and it requires less training

time on a much smaller architecture. While improving the nu-

merical results, Agglomerator++ further reduces the number

of parameters by enforcing the sharing of the weights among

all bottom-up and top-down networks, and it avoids building

extra layers on top of the architecture to perform the con-

trastive pre-training and the classification as in our previous ap-

proach. Thus, the number of network parameters is now com-

parable with capsule-based networks. The improvement in per-

formance on more complex datasets with respect to capsules

highlights the expressive power of our d-dimensional embed-

dings with respect to a group of neurons.

Ablation study. Our Agglomerator++ architecture’s key

components—attention A(Lk
t ), positional embedding p(h,w),

number of levels K, and embedding dimension d—underwent

ablation studies, showing their impact on performance. More-

over we ablate the percentages of masked patches.

In Tab. 2 we ablate the number of levels K. It illustrates

how Agglomerator++ (I) surpasses the original network ver-

sion (Garau et al. (2022)) (II) while decreasing parameter count

through weight sharing across all networks and levels. This

demonstrates that it is possible to add levels K to the network.

Modifying the number of levels K (III)(IV) also affects perfor-

mance, leading to a slight decrease. This likely occurs because
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K = 5 is the optimal number of levels to construct a part-whole

hierarchy that is sufficiently complex to capture the dataset’s in-

tricacies with respect to K = 3, without overcomplicating it as

with K = 8.

In Tab. 3 we ablate the embedding dimensions d, as well as

other key components. Modifying the embedding dimensions d

(IV)(V) has a huge impact on the number of parameters, with a

smaller number leading to worse results (IV) and a bigger one

leading to similar performance, but a huge increase in the num-

ber of parameters (V). Performance deteriorates when attention

A(Lk
t ) (VI) or positional embedding p(h,w) (VII) are removed,

indicating their crucial role. The elimination of the two regular-

ization losses Ld(x, y) (IX) has minor impact on performance,

primarily affecting island formation. Removing the convolu-

tional tokenizer (X) worsens results, hindering inter-patch in-

formation exchange at the embedding stage.

In Tab. 4 we ablate different masking percentages of the

patches. The results show that masking a small percentage of

the patches leads to a slight decrease in performance, as the

network is not sufficiently challenged to learn representative

features. Similarly, masking a too high percentage of patches

proves too challenging for the network, resulting in worse per-

formance.

4.2. Qualitative results

Our method provides interpretability of the relationships

learned by the model by explicitly modeling the part-whole hi-

erarchy, and of the relationships contained in data through the

hierarchical organization of the feature space.

Part-whole hierarchy via island of agreement. In 4, we

demonstrate that the model is able to capture meaningful hier-

archical representations of the objects within the scenes. This

is evidenced by the colour-coding of embedding vectors, where

similar coloured patches denote spatial regions that the model

associates with objects or their parts. Notably, as we progress

up the hierarchy, (vertically along the columns), we observe

a convergence of embedding vectors into predominantly two

main ”islands” in most examples. These islands represent the

primary object and the background. More specifically, during

(a) ResNet-101 O=12% (b) ViT-L/16 O=24%

(c) Ours O=9% (d) ConvMLP-L O=12%

(e) Matrix-CapsNet O=20% (f) Legend

Fig. 5: The 2D latent space representation of multiple methods trained on the

CIFAR-10 dataset through PCA is illustrated. The PCA reduces data from mul-

tidimensional to 2D. The legend (f) classifies samples into Vehicles and Animals

following WordNet hierarchy (Miller (1995)). All methods (a,b,c,d,e) cluster

samples between super-classes. The MLP-based methods (c,d) offer superior

super-class separation, while placing similar samples together. Our method (c)

optimizes inter-class and intra-class separability. The overlap percentage O de-

notes areas prone to severe hierarchical errors (Bertinetto et al. (2020)).

the propagation phase, neighbor levels on layer Lk
t are driven to

form islands of agreement, showcasing part-whole hierarchies.

Examples from MNIST and CIFAR-10 with K = 5 levels are

shown. Instead of the convolutional tokenizer, a linear embed-

ding, although lowering numerical results (Tab. 3), is used for

better visualization. Vectors from the same island are grouped

by cosine similarity between each embedding ltk and all level K

embeddings.

Therefore, as k for Lk
t increases, neighbors tend to agree on

the whole representation. Lower levels display smaller islands

each representing a part. Our Agglomerator++ represents a

patch at different abstraction levels and the same level’s patches
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agree on the representation.

Latent space organization as the representation of

conceptual-semantic relationship in data. Recent networks

aim at maximizing inter-class distances and minimizing intra-

class distances between samples in the latent space. While the

accuracy is high, they provide little interpretability in their data

representation. As a result, mistakes are less likely to happen,

but the mistake severity, defined as the distance between two

classes in WordNet lexical hierarchy (Miller (1995)), does not

decrease (Bertinetto et al. (2020)). As shown in Fig. 5, our net-

work semantically organizes the input data resembling the hu-

man lexical hierarchy, even though, differently from Garau et al.

(2022), no contrastive loss is enforced. It is interesting to note

that our network, unlike others, can enforce a more dispersed

distribution of the samples belonging to the ”Vehicles” super-

class. This distribution better mirrors our lexical hierarchy, as

the vehicles sharing the most similarities with samples from the

”Animals” superclass are airplanes and birds. Additionally, the

organization within the ”Animals” superclass shows closer re-

semblance to human lexical organization, with all quadrupeds

clustered together in the latent space and birds positioned far-

ther apart.

5. Conclusion

We presented Agglomerator++, a method that makes a step

forward towards representing interpretable part-whole hierar-

chies and conceptual-semantic relationships in neural networks.

We believe that interpretable networks are key to the success

of AI and deep learning. In this work, we show that by em-

ploying a self-supervised reconstruction training phase, we can

significantly enhance the representations learned by our net-

work, achieving better performance compared to similar net-

works trained with contrastive loss. The biological processes

happening in our brains when learning are probably a combi-

nation of the two processes, which we view as the next step to

obtain even richer and better explainable representations.

6. Declaration of generative AI and AI-assisted technolo-

gies in the writing process

During the preparation of this work the authors used Chat-

GPT in order to improve readability and to correct typos. After

using this tool/service, the author(s) reviewed and edited the

content as needed and take full responsibility for the content of

the publication.
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